Acute myeloid leukaemia (AML) is the leading form of fatal acute leukaemia in adults. AML is a heterogeneous disease with respect to responsible mutations and chromosomal abnormalities as well as to their clinicopathological image. In recent years, great progress has been made in techniques allowing detection of genetic changes in both de novo AML and in secondary AML induced by other haematological disorders or therapy, and in detection of residual disease after therapy. Accumulated knowledge allowed better understanding of the molecules and mechanisms involved not only in the formation and expansion of a primary leukaemia-founding clone, but also of a temporal order of changes leading to the fully malignant phenotype. The recent knowledge of bone marrow (BM) compartments and interrelations among various BM resident and recruited cell types helps in understanding the AML development. The progress in the techniques and knowledge will result in the development and use of molecularly targeted therapies tailored to individual patient needs. and Corresponding author: Michal Dvořák
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P<0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.