First step in developing an epitope-based vaccine is to predict peptide binding to the major histocompatibility complex (MHC) molecules. We performed computational analysis of unique available EgA31 sequence to locate appropriate antigenic propensity positions. T-cell epitopes with best binding affinity values of < 50% inhibitory concentration were selected using different available servers (Propred and IEDB). Peptides with 100% population coverage were selected. A DNA fragment corresponding to the furin linker enriched in Golgi apparatus was inserted sequentially between each epitope sequences in a synthetic DNA in order to cleave the chimeric protein into four separated peptides. Subsequently, the synthetic DNA was cloned into the pGEX4T-1 and pEGFP-N1 vectors and GST-ChEgA31 was expressed in E. coli strain BL21-DE3. The recombinant protein was detected by western blotting using an HRP-conjugated polyclonal anti-GST antibody. Fusion protein purified by affinity chromatography was used to raise antisera in rabbits. Results in agar gel immunodiffusion assay indicated induction of specific antibodies against multiepitope antigen in the tested rabbits. Cytokine assay was carried out in C57Bl/6 mice and the levels of cytokines were analyzed by sandwich ELISA. Interestingly, production of specific IFN-γ was prominently higher in mice immunized with GST-ChEgA31 and pEGFP-ChEgA31 (650-1 300 pg/ml) compared to control groups. No difference was observed in the level of IL-10 and IL-4 in immunized and GST control group. Challenge study with 500 live protoscolices of Echinococcus granulosus on immunized mice demonstrated protectivity level (50-60%). Based on our results, it appeared that the chimeric protein in the study was able to stimulate T-helper cell-1 (Th1) development and high level of cell mediated immunity in mice.
a1_Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diversity of parasites, including some, like their hosts, that are marine-derived. Among the parasites of potamotrygonids, the cestode fauna is the most diverse, with multiple genera having been reported, including genera endemic to the freshwaters of the Neotropics and genera that have cosmopolitan distributions. Recent efforts have been made to document the diversity of cestodes of this host-parasite system and to refine the taxonomy of parasite lineages. The present study contributes to our knowledge of Rhinebothrium Linton, 1890, a diverse cosmopolitan genus of rhinebothriidean cestode, with 37 species reported from marine batoids, one species from a freshwater stingray in Borneo and six species from potamotrygonids. Rhinebothrium jaimei sp. n. is described from two species of potamotrygonids, Potamotrygon orbignyi (Castelnau) (type host) and Potamotrygon scobina Garman, from Bahía de Marajó of the lower Amazon region. It can be distinguished from most of its marine congeners via multiple attributes, including its possession of two, rather than one, posteriormost loculi on its bothridia and the lomeniform shape of its bothridium that is wider anteriorly. In addition, R. jaimei sp. n. can be distinguished from the six Rhinebothrium species described previously from potamotrygonids based on a unique combination of morphological features. Despite extensive stingray cestode sampling efforts throughout all major Neotropical river systems, we found that unlike most species of potamotrygonid Rhinebothrium species, which are widespread, R. jaimei sp. n. is restricted to the Bahía de Marajó., a2_The discovery of this new species of Rhinebothrium in Bahía de Marajó, an area in which potamotrygonids occur sympatrically with some species of euryhaline batoids (e.g. Dasyatis spp.) and share some trophic resources, suggest that modern ecological processes may be contributing to the distribution patterns of cestodes infecting potamotrygonids., Fernando P. L. Marques, Florian B. Reyda., and Obsahuje bibliografii