Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure., B. B. Liu, M. Li, Q. M. Li, Q. Q. Cui, W. D. Zhang, X. Z. Ai, H. G. Bi., and Obsahuje bibliografii
The aim of our study was to investigate the underlying molecular mechanisms of exogenously supplied trehalose affecting wheat photosynthesis under heat stress. The amount of ATP synthase (ATPase), oxygen-evolving enhancer protein (OEE), PsbP, Rubisco, chloroplast fructose-bisphosphate aldolase (FBPA), and ferredoxin-NADP(H) oxidoreductase (FNR) were downregulated, while PSI reaction center subunits were upregulated under heat stress. However, in the trehalose-pretreated groups, the amount of FNR, cytochrome b6f complex, PSI reaction center subunits, ATPase, FBPA, and Rubisco were upregulated under normal growth conditions and heat stress. Besides, during the recovery period, the upregulation in CAB, PsbP, OEE2, and ATPase suggested that trehalose pretreatment might help to the recovery of PSII and PSI. These results indicate that trehalose pretreatment effectively regulates the levels of the photosynthesis-related proteins and relieves the damage of heat stress to wheat chloroplast., Y. Luo, H. Y. Liu, Y. Z. Fan, W. Wang, Y. Y. Zhao., and Obsahuje bibliografii
Efficient degradation of damaged D1 during the repair of PSII is carried out by a set of dedicated FtsH proteases in the thylakoid membrane. Here we investigated whether the evolution of FtsH could hold clues to the origin of oxygenic photosynthesis. A phylogenetic analysis of over 6000 FtsH protease sequences revealed that there are three major groups of FtsH proteases originating from gene duplication events in the last common ancestor of bacteria, and that the FtsH proteases involved in PSII repair form a distinct clade branching out before the divergence of FtsH proteases found in all groups of anoxygenic phototrophic bacteria. Furthermore, we showed that the phylogenetic tree of FtsH proteases in phototrophic bacteria is similar to that for Type I and Type II reaction centre proteins. We conclude that the phylogeny of FtsH proteases is consistent with an early origin of photosynthetic water oxidation chemistry., S. Shao, T. Cardona, P. J. Nixon., and Obsahuje bibliografické odkazy
The effects of NaCl treatment were analysed in two species of considerably different resistance. In glycophyte, the content of ascorbate decreased but lipophilic antioxidants (α-tocopherol, plastochromanol, and hydroxy-plastochromanol) increased due to 150 mM NaCl. In halophyte, 300 mM NaCl caused a significant increase in hydrophilic antioxidants (ascorbate, total glutathione) but not in the lipophilic antioxidants. The redox states of plastoquinone (PQ) and P700 were also differently modulated by salinity in both species, as illustrated by an increased oxidation of these components in glycophyte. The presented data suggest that E. salsugineum was able to avoid a harmful singlet oxygen production at PSII, which might be, at least in part, attributed to the induction of the ascorbate-glutathione cycle. Another important cue of a high salinity resistance of this species might be the ability to sustain a highly reduced states of PQ pool and P700 under stress, which however, drastically affect the NADPH yield., M. Wiciarz, E. Niewiadomska, J. Kruk., and Obsahuje bibliografii
We investigated the photosynthesis and leaf development of cherry tomato seedlings grown under five different combinations of red and blue light provided by light-emitting diodes (LEDs). Fresh biomass increased significantly under treatments with blue light percentages of 50, 60, and 75%, with 50% blue-light-grown seedlings accumulating significantly more dry mass. The 25% blue-light-grown seedlings were obviously weaker than those from the other LED treatments. An increase in net photosynthetic rate upon blue light exposure (25-60%) was associated with increases in leaf mass per unit leaf area, leaf area, leaf density, stomatal number, chloroplast and mesophyll cell development, and chlorophyll contents. Our results imply that photosynthesis and leaf development in cherry tomato seedlings are associated with both the proportion and quantity of blue light., X. Y. Liu, X. L. Jiao, T. T. Chang, S. R. Guo, Z. G. Xu., and Obsahuje bibliografii
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (PN) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in PN was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of PN under 35°C., J. Zhang, X. D. Jiang, T. L. Li, X. J. Cao., and Obsahuje bibliografii
Limitations in photosystem function and photosynthetic electron flow were investigated during leaf senescence in two field-grown plants, i.e., Euphorbia dendroides L. and Morus alba L., a summer- and winter-deciduous, shrub and tree, respectively. Analysis of fast chlorophyll (Chl) a fluorescence transients and post-illumination fluorescence yield increase were used to assess photosynthetic properties at various stages of senescence, the latter judged from the extent of Chl loss. In both plants, the yield of primary photochemistry of PSII and the content of PSI remained quite stable up to the last stages of senescence, when leaves were almost yellow. However, the potential for linear electron flow along PSII was limited much earlier, especially in E. dendroides, by an apparent inactivation of the oxygen-evolving complex and a lower efficiency of electron transfer to intermediate carriers. On the contrary, the corresponding efficiency of electron transfer from intermediate carriers to final acceptors of PSI was increased. In addition, cyclic electron flow around PSI was accelerated with the progress of senescence in E. dendroides, while a corresponding trend in M. alba was not statistically significant. However, there was no decrease in PSI activity even at the last stages of senescence. We argue that a switch to cyclic electron flow around PSI during leaf senescence may have the dual role of replenishing the ATP and maintaining a satisfactory nonphotochemical energy quenching, since both are limited by hindered linear electron transfer., C. Kotakis, A. Kyzeridou, Y. Manetas., and Obsahuje bibliografii
Caffeine, a purine alkaloid, is reported to act both as an inducer or inhibitor to plant growth in various species. The aim of this study was to examine the effect of exogenous caffeine on tobacco (Nicotiana tabacum) plants, a plant that does not naturally synthesise caffeine. A hydroponic experiment was carried out in a growth chamber for 14 d using Hoagland’s solution supplemented with 0 (control), 25, 50, 100, 1,000; and 5,000 μM caffeine. None of the investigated caffeine concentrations significantly decreased the net photosynthetic rate except the highest concentrations of 1,000 and 5,000 μM. Light microscopy of thick-sectioned roots showed that 1,000 μM and 5,000 μM caffeine-treated plants possessed deformed epidermal cells, reduced number of cortical cells, and deformed vascular tissues with cells exhibiting thickened xylem walls as compared with control plants. Moreover, transmission electron micrographs of roots revealed that mitochondria and the plasma membrane were affected., R. Alkhatib, B. Alkhatib, L. Al-Eitan, N. Abdo, M. Tadros, E. Bsoul., and Obsahuje bibliografii
Water stress is a major abiotic constraint leading to serious crop losses. Recently, in the Mediterranean region, water stress has become markedly sensed, especially in Citrus orchards. This study investigated the physiological responses of local sour orange (Citrus aurantium L.) clones to severe water stress. Water stress was applied by withholding irrigation during weeks, followed by a rewatering phase during three months. Under water stress, sour orange clones decreased their stomatal conductance, net photosynthetic rate, and transpiration rate. On the contrary, biomass was stable, especially in the Kliaa clone. In addition, reduced leaf water potentials (-3 MPa) and water contents were measured in most of the clones, except Kliaa which kept the highest water potential (-2.5 MPa). After rewatering, all clones recovered except of the Ghars Mrad (GM) clone. Ultrastructural observations of leaf sections by transmission electron microscopy did not reveal marked alterations in the mesophyll cells and chloroplast structure of Kliaa in comparison to the sensitive clone GM, in which palisade parenchyma cells and chloroplasts were disorganized. This contrasting behavior was mainly attributed to genetic differences as attested by molecular analysis. This study highlighted GM as the drought-sensitive clone and Kliaa as the tolerant clone able to develop an avoidance strategy based on an efficient stomatal regulation. Although a high percentage of polyembryony characterizes C. aurantium and justifies its multiplication by seeds, heterogeneous water-stress responses could be observed within sour orange plants in young orchards., A. Ben Salem-Fnayou, I. Belghith, M. Lamine, A. Mliki, A. Ghorbel., and Obsahuje bibliografii