A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$ $\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).