In this paper, we establish the controllability conditions for a finite-dimensional dynamical control system modelled by a linear impulsive matrix Lyapunov ordinary differential equations having multiple constant time-delays in control for certain classes of admissible control functions. We characterize the controllability property of the system in terms of matrix rank conditions and are easy to verify. The obtained results are applicable for both autonomous (time-invariant) and non-autonomous (time-variant) systems. Two numerical examples are given to illustrate the theoretical results obtained in this paper.
The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function V and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method.