Population density during nymphal development affects body size, developmental rate and wing polymorphism in semiaquatic bugs. Nymphs from crowded habitats grow faster and thus gain an advantage in the later stadia. Rapid development results in smaller body size in several gerrids. Macropterous adults develop more frequently at high population densities in most species, which enables the bugs to leave crowded habitats. Three European widespread species Mesovelia furcata Mulsant & Rey, 1852 (Mesoveliidae), Microvelia reticulata Burmeister, 1835 and Velia caprai Tamanini, 1947 (Veliidae) were reared individually and simultaneously either at a low or high population density. Duration of postembryonic development, wing morph, body size and length of distal oocyte in females were recorded. High population density accelerates development in Mesovelia furcata and Microvelia reticulata. However, there was no trade-off between developmental rate and body size. Accelerated development without a decrease in body size was probably because maturation was delayed. Individually reared nymphs developed faster than nymphs from communal cohorts. No long-winged Microvelia reticulata specimen developed in any treatment. However, more macropterous individuals developed in high-density treatments in Mesovelia furcata (significant) and Velia caprai (not significant). All the nymphs of the species that were reared individually developed into apterous adults. The results suggest that population density strongly influences the life history of semiaquatic bugs. However, the only commonly shared response seems to be an increase in developmental rate when reared at high population densities. Other traits such as wing dimorphism, body size and rate of oogenesis differ at the species level.
The development of the Western Flower Thrips (Frankliniella occidentalis Pergande; Thysanoptera: Thripidae) was studied at six temperatures between 10 and 35°C. Developmental rate increased linearly as rearing temperature increased. It was estimated that 268 degree-days, above a threshold temperature of 7.9°C, were required to complete development from egg to adult. These data were related to records of field temperatures in the West Midlands region of the UK, to estimate the potential number of generations per year that could complete development in outdoor conditions. Using this data, a maximum of between three and five generations could have developed annually between 1986 and 1995, (in the absence of factors impairing continuous development). The application and relevance of this data as an indicator of the potential range of F. occidentalis is discussed.
This study investigates the thermal requirements, nymphal development rates and the fecundity of both alate and apterous adults of the giant willow aphid, Tuberolachnus salignus (Gmelin) at several temperatures. Nymphal development rate increased linearly with temperature. It was estimated that 196 ± 4 degree-days above a threshold temperature of 5.5 ± 0.3°C were required for apterae to complete development from birth to final ecdysis. The alate morph was significantly less fecund than the apterous morph and its fecundity did not vary with temperature. The apterous morph displayed highest fecundity at 20°C. Survival to reproduction was lower in the alate morph, but temperature had no effect on the proportion reproducing in either morph.
The pistachio psylla, Agonoscena pistaciae Burckhardt & Lauterer (Hemiptera: Psyllidae), is a major pest of pistachio trees throughout the pistachio producing regions in Iran. The effect of temperature on the developmental rates of eggs and nymphs of A. pistaciae was determined at different constant temperatures, i.e. 15, 20, 25, 30, 32.5 and 35 ± 0.5°C. The relationships between temperature and developmental rates were described by linear and the non-linear Lactin models. These models were evaluated based on R2, RSS, AIC and R2adj. The estimated value of the lower temperature threshold for egg, nymph and egg to adult development based on the linear model was 8.06, 10.38 and 9.97°C, respectively, and based on the Lactin model was 8, 11.55 and 11.2°C, respectively. Thermal constants estimated using the linear model, were 88.5, 243.90 and 333.33 DD, respectively, for egg, nymph and egg to adult development. These results indicate that the linear model gives a better description of the relationship between developmental rate and temperature for A. pistaciae than the non-linear model. These results could be incorporated into forecasting models used in the integrated pest management of this pest. and Mohammad Reza Hassani, Abbas Arbab, Hamzeh Izadi, Gadir Nouri-Ganbalani.
Dubas bug, Ommatissus lybicus Bergevin, is an important pest of date palm on the Arab peninsula. This sucking insect causes great damage to the trees and reduces the quantity and quality of the dates. Effect of temperature on the development of the immature stages of O. lybicus was studied in the laboratory by rearing them at nine constant temperatures, ranging from 15 to 35°C. Development was successfully completed at temperatures ranging from 20 to 35°C for eggs and from 20 to 32.5°C for nymphs. The lower thermal thresholds for development of eggs, nymphs and egg-adult were estimated by means of linear regression as 12.9, 12.9 and 13.2°C, respectively. Thermal units required for the development of the same stages were 572.5, 648.2 and 1184.4 degree-days, respectively. The lethal high temperatures were also estimated using a nonlinear model as 34.5, 43.4 and 34.6°C for eggs, nymphs and total immature stages, respectively. The development rate and survival data indicate that the optimum temperature range for O. lybicus is 25-27.5°C.