In the present paper we deal with generalized $MV$-algebras ($GMV$-algebras, in short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors, $GMV$-algebras can be obtained by a truncation construction from lattice ordered groups. We investigate direct summands and retract mappings of $GMV$-algebras. The relations between $GMV$-algebras and lattice ordered groups are essential for this investigation.
The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.
An S-closed submodule of a module M is a submodule N for which M/N is nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if any S-closed submodule N of M is a direct summand of M. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right R-modules are projective if and only if all right R-modules are GCS-modules., Qingyi Zeng., and Obsahuje seznam literatury