The oldest butterfly fossil known, which was formed about 55 Ma in what is now Denmark, is described. The fragments of its forewing venation indicates it belongs to the Hesperiidae. Further reconstruction indicates that it fits in the Coeliadinae and is close to the extant genera Hasora and Burara. It is here described as Protocoeliades kristenseni gen. et sp. n. It is the first butterfly fossil found on a continent (Europe) where its closest relatives do not currently occur. Its position on the phylogenetic tree of the Coeliadinae and its importance in understanding the time dimension in the evolution of butterflies, and their ecological and biogeographic implications are discussed., Rienk De Jong., and Obsahuje bibliografii
We review the cicada genus Auritibicen Lee, 2015 based on the description of ten new species: A. aethus sp. n., A. daoxianensis sp. n., A. pallidus sp. n., A. rotundus sp. n., A. curvatus sp. n., A. purus sp. n., A. parvus sp. n., A. gracilis sp. n., A. septatus sp. n. and A. lijiangensis sp. n. Auritibicen shikokuanus (Kato, 1959) is confirmed to be a synonym of Auritibicen kyushyuensis (Kato, 1926). Diagnoses and descriptions, along with illustrations of the structure of male genitalia, are provided for all Auritibicen species. The systematics of Auritibicen is elucidated using both morphological and molecular characterization. Thirty-five morphological characters of the 24 species of Auritibicen and one outgroup taxon, Chremistica ochracea (Walker, 1850), were scored. Morphological phylogenetic analyses reveal the relationships among related species of Auritibicen, which are supported by a number of morphological characters. The mitochondrial gene fragments of Cytochrome Oxidase I (COI) of 11 species of Auritibicen and two outgroup Lyristes species were analyzed and yielded identical robust phylogenetic trees. The phylogram based on a Bayesian analysis of both morphological and molecular data is similar to the ML/BI topologies based only on the molecular data. The molecular phylogenetic analysis indicates that species of Auritibicen are structured phylogeographically, with related species clustered into three lineages. The divergence time estimated based on molecular data indicates that the divergence of Auritibicen from Lyristes occurred during the Miocene, and the most recent common ancestor (tMRCA) of Auritibicen evolved during the Pliocene. However, the time when the main divergence events of species of Auritibicen occurred was the Pleistocene. From the combination of the phylogeny and updated geographical distributions, we infer that the center of distribution of Auritibicen could be Southwest China (e.g., Sichuan and Yunnan Provinces), from where species of this genus spreaded northeastwards to Shaanxi, Hubei and other provinces along the Qinling and Daba Mountains, then further northeastwards to Hebei Province in China and also to Far East Russia, the Korean Penisula, and Japan.