A voltammetric technique was used (differential pulse voltammetry with a carbon fibre microelectrode) to investigate dynamics of the changes of catecholamine overflow in the corpus striatum following electroconvulsive stimulation (ECS) of chloral hydrate-anaesthetized rats. Application of "maximal" ECS (50 Hz, AC, sine wave, approximately 150 mA, 0.2 s) caused large enhancement of catechol-oxidative current (CA.OC): In the first minute after its arrest, the CA.OC peak raised to 1032±405% (n=5, mean±S.D.) of the controls (P<0.001, Student's t-test). This large elevation of the extracellular catecholamine content ceased rapidly - the baseline level was attained in the second minute. CA.OC changes evoked by a "minimal" ECS (50 Hz, AC, sine wave, approximately 30 mA, 0.2 s) were equivocal in the first minute (increase, decrease: 145 ±56 %, P>0.05, n=6). Possible mechanisms of the ECS therapeutic effect are discussed.