1. Exact asymptotic behavior of singular values of a class of integral operators
- Creator:
- Dostanić, Milutin
- Format:
- bez média and svazek
- Type:
- model:article and TEXT
- Subject:
- math, exact asymptotic formula, and integral operators
- Language:
- English
- Description:
- We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm{d}y \: L^2 (\Omega )\rightarrow L^2(\Omega)$ ($\Omega \subset \mathbb{R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m}< \alpha < \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/ and policy:public