The relationship between possible alterations in the volume or distribution of extracellular fluid and the development of salt hypertension was studied in inbred salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) Dahl rats. Blood pressure, cardiac and renal hypertrophy as well as body fluid volumes were determined in young and adult SS/Jr and SR/Jr rats of both sexes that were subjected to low, normal or high salt intake for various periods of time. Salt hypertension in young salt-sensitive rats fed a 4 % NaCl diet was not accompanied by any substantial intravascular or interstitial expansion as compared to salt-resistant rats that remained normotensive. There was no sex difference in the response of blood pressure or body fluids to high salt intake. Major expansion of plasma and blood volume, which was elicited by 8 % NaCl diet feeding from prepuberty, was not accompanied by a further blood pressure rise (compared to salt hypertensive SS/Jr rats fed 4 % NaCl diet). In conclusions, salt hypertension can occur in Dahl salt-sensitive rats without major salt and water retention. The degree of intravascular expansion is not directly related to blood pressure levels in salt-loaded Dahl rats. A high salt intake seems to exert its hypertensive effects in Dahl rats preferentially by influencing the balance of vasoconstrictor and vasodilator systems rather than by increasing the haemodynamically active intravascular volume.
The role of age in the development of two-kidney, one-clip (2K1C) renal hypertension was evaluated. Blood pressure response to aortic constriction was more pronounced in young rats although the alterations of renal renin activity and body fluid volumes were greater in adult ones. Obtained results suggested that 2K1C renal hypertension is maintained by reciprocal interaction of renin-angiotensin system and body fluid volume alterations only in adult rats. In young rats other factors might be more important.