Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium. We consider also a case when the information about system state is incomplete. Our new mathematical technique is applied to the stabilization of operating modes in the flow chemical reactors forced by random disturbances.