A generalized $MV$-algebra $\mathcal A$ is called representable if it is a subdirect product of linearly ordered generalized $MV$-algebras. Let $S$ be the system of all congruence relations $\rho $ on $\mathcal A$ such that the quotient algebra $\mathcal A/\rho $ is representable. In the present paper we prove that the system $S$ has a least element.
In the present paper we deal with generalized $MV$-algebras ($GMV$-algebras, in short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors, $GMV$-algebras can be obtained by a truncation construction from lattice ordered groups. We investigate direct summands and retract mappings of $GMV$-algebras. The relations between $GMV$-algebras and lattice ordered groups are essential for this investigation.
Let $\frak m$ be an infinite cardinal. We denote by $C_\frak m$ the collection of all $\frak m$-representable Boolean algebras. Further, let $C_\frak m^0$ be the collection of all generalized Boolean algebras $B$ such that for each $b\in B$, the interval $[0,b]$ of $B$ belongs to $C_\frak m$. In this paper we prove that $C_\frak m^0$ is a radical class of generalized Boolean algebras. Further, we investigate some related questions concerning lattice ordered groups and generalized $MV$-algebras.