Let $\frak m$ be an infinite cardinal. We denote by $C_\frak m$ the collection of all $\frak m$-representable Boolean algebras. Further, let $C_\frak m^0$ be the collection of all generalized Boolean algebras $B$ such that for each $b\in B$, the interval $[0,b]$ of $B$ belongs to $C_\frak m$. In this paper we prove that $C_\frak m^0$ is a radical class of generalized Boolean algebras. Further, we investigate some related questions concerning lattice ordered groups and generalized $MV$-algebras.
In this paper we investigate convergence structures on a generalized Boolean algebra and their relations to convergence structures on abelian lattice ordered groups.
The extension of a lattice ordered group $A$ by a generalized Boolean algebra $B$ will be denoted by $A_B$. In this paper we apply subdirect decompositions of $A_B$ for dealing with a question proposed by Conrad and Darnel. Further, in the case when $A$ is linearly ordered we investigate (i) the completely subdirect decompositions of $A_B$ and those of $B$, and (ii) the values of elements of $A_B$ and the radical $R(A_B)$.
In this paper we investigate the relations between torsion classes of Specker lattice ordered groups and torsion classes of generalized Boolean algebras.