The paper describes the general form of functional-differential equations of the first order with $m (m\ge 1)$ delays which allows nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation \[ f(t, uv, u_{1}v_{1}, \ldots , u_{m}v_{m}) = f(x, v, v_{1}, \ldots , v_{m})g(t, x, u, u_{1}, \ldots , u_{m})u + h(t, x, u, u_{1}, \ldots , u_{m})v \] for $u\ne 0$ is solved on $\mathbb R$ and a method of proof by J. Aczél is applied.
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form
\[ f(t,vy,wy+uvz)=f(x,y,z)u^{2}v+g(t,x,u,v,w)vz+h(t,x,u,v,w)y+2uwz \] is solved on $\mathbb R$ for $y\ne 0$, $v\ne 0.$.