Preferences of young caterpillars of three species of Pieris (P. rapae crucivora Boisduval, P. melete Ménétriès, and P. napi japonica Shirôzu) (Lepidoptera: Pieridae) for the upper and lower surfaces of the leaves of their host plants (Brassicaceae) were investigated in the laboratory. On horseradish Armoracia rusticana Gaertn. Mey. et Scherb., which was provided as a common food for three species, second and third instar larvae of the respective species preferred the lower to the upper surface of horizontally placed leaves, irrespective of whether they hatched on the upper or lower surface. First instar larvae seemed to remain on the surface on which they hatched. However, first instar larvae of P. melete on Rorippa indica (L.), a natural food of P. melete in the field, and first instar larvae of P. napi japonica on Arabis flagellosa Miq., a natural food of P. napi japonica, preferred the lower to the upper surface, just as second and third instar larvae did. To elucidate the effects of leaf-surface preference, the percentage parasitism of P. rapae crucivora on Arm. rusticana and Ara. flagellosa by the parasitoid Cotesia glomerata (L.) (Hymenoptera: Braconidae) was investigated. On Arm. rusticana, the percentage parasitism of the larvae on the upper surface was higher than that of larvae on the lower surface. On Ara. flagellosa, however, percentages parasitism were nearly equal on both surfaces. Leaf-surface preference by the larvae of Pieris is discussed in terms of avoidance of parasitism by the parasitoid C. glomerata.
Horse chestnut leaf miner (Cameraria ohridella) has achieved ecological success by colonizing the entire European range of its primary host, horse chestnut (Aesculus hippocastanum). This insect has attracted the attention of scientists, but its ecology is poorly understood. Here, we investigated the effects of varying degrees of light availability on the leaf morphology of horse chestnut saplings and the performance of C. ohridella. A pot experiment under greenhouse conditions was performed in which the photosynthetic photon flux density (PPFD) was reduced from full light by 50% (high light - HL) or 80% (low light - LL). Insect performance parameters were quantified (i.e., pupal mass, efficiency of conversion of utilised leaf tissue (ECU) and potential fecundity). Compared with HL leaflets those from LL were characterised by higher contents of nitrogen and water but lower total phenolics. The oxidative capacity of phenolics (at pH ≈ 10, common in the lepidopteran gut) was low and did not differ in the two treatments. Compared with those collected from HL leaves, the mines of those collected from leaves of plants grown under LL conditions were larger in area but the leaf mass utilized by larvae was similar. Pupae were heavier in LL than in HL conditions, and ECU was higher in LL. The potential fecundity of females was not sensitive for experimental treatment. We conclude that (1) reduced light had a strong beneficial effect on the performance of C. ohridella and (2) phenolics in A. hippocastanum leaf tissues are a poor defence against this herbivore.
The tritrophic interactions between two different plant-host complexes, Avena sativa-Sitobion avenae, Triticum aestivum-S. avenae and the aphid parasitoid Aphidius rhopalosiphi were studied with respect to odour learning and recognition by the parasitoid. The orientation behaviour of females towards odours from either uninfested or aphid-infested oat or wheat plants was tested in a series of dual choice Y-tube olfactometer experiments. Female parasitoids had the opportunity to gain a single oviposition experience on either the oat-S. avenae or wheat-S. avenae complex before the experiment. In the first set of experiments, where A. rhopalosiphi was reared on the oat-S. avenae complex, eight odour-bait combinations were tested. The females did not discriminate between uninfested oat and wheat. After oat complex experience, females responded to odours from the oat complex, but not to odours from the wheat complex. Consequently, in a direct comparison the oat complex was preferred over the wheat complex. After wheat complex experience, the parasitoid's orientation responses gave a different picture. Both, the wheat complex and the oat complex, were then shown to be equally attractive. Hence, in direct comparison no preference was recorded between the oat and wheat complexes. In a second set of experiments, where A. rhopalosiphi was reared on the wheat- S. avenae complex, a possible influence of any pre-adult or emergence-related host plant experience could be excluded as the same results were obtained as before. At first glance the responses towards the different odour baits seem inconsistent. However, the results may be explained using a simple model with two key odour components.