Complex dynamic regimes connected with the noise-induced mixed-mode oscillations in the thermochemical model of flow reactor are studied. It is revealed that the underlying reason of such excitability is in the high stochastic sensitivity of the equilibrium. The problem of stabilization of the excitable equilibrium regimes is investigated. We develop the control approach using feedback regulators which reduce the stochastic sensitivity and keep the randomly forced system near the stable equilibrium. We consider also a case when the information about system state is incomplete. Our new mathematical technique is applied to the stabilization of operating modes in the flow chemical reactors forced by random disturbances.
The authors introduce risk sensitivity to a model of sequential games where players don't know beforehand which of them will make a choice at each stage of the game. It is shown that every sequential game without a predetermined order of turns with risk sensitivity has a Nash equilibrium, as well as in the case in which players have types that are chosen for them before the game starts and that are kept from the other players. There are also a couple of examples that show how the equilibria might change if the players are risk prone or risk adverse.