This study evaluated the photosynthetic responses of Cucumis sativus leaves acclimated to illumination from three-band white fluorescent lamps with a high red:far-red (R:FR) ratio (R:FR = 10.5) and the photosynthetic responses of leaves acclimated to metal-halide lamps that provided a spectrum similar to that of natural light (R:FR = 1.2) at acclimation photosynthetic photon flux density (PPFD) of 100 to 700 μmol m-2 s-1. The maximum gross photosynthetic rate (PG) of the fluorescent-acclimated leaves was approximately 1.4 times that of the metal-halide-acclimated leaves at all acclimation PPFDs. The ratio of quantum efficiency of photosystem II (ΦPSII) of the fluorescent-acclimated leaves to that of the metal-halide-acclimated leaves tended to increase with increasing acclimation PPFD, whereas the corresponding ratios for the leaf mass per unit area tended to decrease with increasing acclimation PPFD. These results suggest that the greater maximum PG of the fluorescent-acclimated leaves resulted from an interaction between the acclimation light quality and quantity, which was mainly caused by the greater leaf biomass for photosynthesis per area at low acclimation PPFDs and by the higher ΦPSII as a result of changes in characteristics and distribution of chloroplasts, or a combination of these factors at high acclimation PPFDs., T. Shibuya .... [et al.]., and Obsahuje bibliografii
Leaf mass per unit area (LMA), carbon and nitrogen contents, leaf construction cost, and photosynthetic capacity (Pmax) of Adiantum reniforme var. sinensis, an endangered fern endemic to the Three Gorges region in southwest China, were compared in five populations differing in habitat such as soil moisture and irradiance. The low soil moisture and high irradiance habitat population exhibited significantly higher LMA, area-based leaf construction (CCA), and carbon content (CA), but lower leaf nitrogen content per unit dry mass (NM) than the other habitat populations. The high soil moisture and low irradiance habitat populations had the lowest CCA, but their cost/benefic ratios of CCA/P max were similar to the medium soil moisture and irradiance habitat population due to their lower leaf Pmax. Hence A. reniforme var. sinensis prefers partially shaded, moist but well-drained, slope habitats. Due to human activities, however, its main habitats now are cliffs or steeply sloped bare rocks with poor and thin soil. The relatively high energy requirements and low photosynthetic capacity in these habitats could limit the capability of the species in extending population or interspecific competition and hence increase its endangerment. and J. X. Liao ... [et al.].
Miscanthus is one of the most promising bioenergy crops with high photosynthetic nitrogen-use efficiency (PNUE). It is unclear how nitrogen (N) influences the photosynthesis in Miscanthus. Among three Miscanthus genotypes, the net photosynthetic rate (PN) under the different light intensity and CO2 concentration was measured at three levels of N: 0, 100, and 200 kg ha-1. The concentrations of chlorophyll, soluble protein, phosphoenolpyruvate carboxylase (PEPC), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, leaf anatomy and carbon isotope discrimination (Δ) in the leaf were analyzed to probe the response of photosynthesis in Miscanthus genotypes to N levels. PN in all genotypes rose significantly as N application increased. The initial slope of response curves of PN to Ci was promoted by N application in all genotypes. Both stomatal conductance and Ci were increased with increased N supply, indicating that stomatal factors played an important role in increasing PN. At a given Ci, PN in all genotypes was enhanced by N, implying that nonstomatal factors might also play an important role in increasing PN. Miscanthus markedly regulated N investment into PEPC rather than the Rubisco large subunit under higher N conditions. Bundle sheath leakiness of CO2 was constant at about 0.35 for all N levels. Therefore, N enhanced the photosynthesis of Miscanthus mainly by increasing stomatal conductance and PEPC concentration., X.-P. Feng ... [et al.]., and Obsahuje bibliografii
We investigated the effect of growth irradiance (I) on photon-saturated photosynthetic rate (Pmax), dark respiration rate (RD), carboxylation efficiency (CE), and leaf mass per unit area (LMA) in seedlings of the following four tropical tree species with contrasting shade-tolerance. Anthocephalus chinensis (Rubiaceae) and Linociera insignis (Oleaceae) are light-demanding, Barringtonia macrostachya (Lecythidaceae) and Calophyllum polyanthum (Clusiaceae) are shade-tolerant. Their seedlings were pot-planted under shading nets with 8, 25, and 50 % daylight for five months. With increase of I, all species displayed the trends of increases of LMA, photosynthetic saturation irradiance, and chlorophyll-based Pmax, and decreases of chlorophyll (Chl) content on both area and mass bases, and mass-based Pmax, RD, and CE. The area-based Pmax and CE increased with I for the light-demanders only. Three of the four species significantly increased Chl-based CE with I. This indicated the increase of nitrogen (N) allocation to carboxylation enzyme relative to Chl with I. Compared to the two shade-tolerants, under the same I, the two light-demanders had greater area- and Chl-based Pmax, photosynthetic saturation irradiance, lower Chl content per unit area, and greater plasticity in LMA and area- or Chl-based Pmax. Our results support the hypothesis that light-demanding species is more plastic in leaf morphology and physiology than shade-tolerant species, and acclimation to I of tropical seedlings is more associated with leaf morphological adjustment relative to physiology. Leaf nitrogen partitioning between photosynthetic enzymes and Chl also play a role in the acclimation to I. and Y.-L. Feng, K.-F. Cao, J.-L. Zhang.
In the evergreen Quercus rotundifolia and the co-existing deciduous Q. faginea we studied the diurnal variations in photosynthetic capacity (Pmax), measured as the rate of O2 evolution at photon and CO2 saturation, and in the rate of net CO2 assimilation (PN) in the field during the period of maximum photosynthetic activity. Our aim was to check the contribution of stomatal and non-stomatal limitations to the diurnal variation in photosynthesis, and to study the differences between both species. Q. faginea leaves displayed lower mass per unit area and higher nitrogen content than Q. rotundifolia leaves. The maximum stomatal conductance and PN in the field were higher in Q. faginea than in Q rotundifolia. Also Pmax of Q. faginea was higher than that of Q. rotundifolia. Both species attained in the field a high percentage of the Pmax (around 82 % for Q. faginea and 73 % for Q. rotundifolia). This indicates reduced stomatal limitation of photosynthesis under favourable conditions, especially in Q. faginea. PN underwent a sharp decrease towards mid-day in association with increase in the atmospheric vapour pressure deficit and decrease in the leaf water potential. Pmax was also reduced during mid-day. This demonstrated the contribution of mesophyll limitations to the PN in the two species under stress. The mesophyll limitation of photosynthesis seemed to be similar for both species, independently from the differences in leaf traits between them. and S. Mediavilla, H. Santiago, A. Escudero.