According to the standard cosmological model, 27 % of the Universe consists of some mysterious dark matter, 68 % consists of even more mysterious dark energy, whereas only less than 5 % corresponds to baryonic matter composed from known elementary particles. The main purpose of this paper is to show that the proposed ratio 27 : 5 between the amount of dark matter and baryonic matter is considerably overestimated. Dark matter and partly also dark energy might result from inordinate extrapolations, since reality is identified with its mathematical model. Especially, we should not apply results that were verified on the scale of the Solar System during several hundreds of years to the whole Universe and extremely long time intervals without any bound of the modeling error.
We show that dynamical systems in inverse problems are sometimes foliated if the embedding dimension is greater than the dimension of the manifold on which the system resides. Under this condition, we end up reaching different leaves of the foliation if we start from different initial conditions. For some of these cases we have found a method by which we can asymptotically guide the system to a specific leaf even if we start from an initial condition which corresponds to some other leaf. We demonstrate the method by two examples. In the chosen cases of the harmonic oscillator and Duffing's oscillator we find an alternative set of equations which represent a collapsed foliation, such that no matter what initial conditions we choose, the system would asymptotically reach the same desired sub-manifold of the original system. This process can lead to cases for which a system begins in a chaotic region, but is guided to a periodic region and vice versa. It may also happen that we could move from an orbit of one period to an orbit of another period.