In a recent paper (Diversity in Monoids, Czech. Math. J. 62 (2012), 795–809), the last two authors introduced and developed the monoid invariant “diversity” and related properties “homogeneity” and “strong homogeneity”. We investigate these properties within the context of inside factorial monoids, in which the diversity of an element counts the number of its different almost primary components. Inside factorial monoids are characterized via diversity and strong homogeneity. A new invariant complementary to diversity, height, is introduced. These two invariants are connected with the well-known invariant of elasticity.
Let $M$ be a (commutative cancellative) monoid. A nonunit element $q\in M$ is called almost primary if for all $a,b\in M$, $q\mid ab$ implies that there exists $k\in \mathbb {N}$ such that $q\mid a^k$ or $q\mid b^k$. We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application the authors consider factorizations into almost primary elements, which generalizes the established notion of factorization into primary elements.
We study the semigroups isomorphic to principal ideals of finitely generated commutative monoids. We define the concept of finite presentation for this kind of semigroups. Furthermore, we show how to obtain information on these semigroups from their presentations.