In the present study, a high percentage of Japanese anglerfish, Lophius litulon (Jordan, 1902), contained a microsporidian infection of the nervous tissues. Xenomas were removed and prepared for standard wax histology and transmission electron microscopy (TEM). DNA extractions were performed on parasite spores and used in PCR and sequencing reactions. Fresh spores measured 3.4 × 1.8 µm and were uniform in size with no dimorphism observed. TEM confirmed that only a single developmental cycle and a single spore form were present. Small subunit (SSU) rDNA sequences were >99.5% similar to those of Spraguea lophii (Doflein, 1898) and Glugea americanus (Takvorian et Cali, 1986) from the European and American Lophius spp. respectively. The microsporidian from the nervous tissue of L. litulon undoubtedly belongs in the genus Spraguea Sprague et Vávra, 1976 and the authors suggest a revision to the generic description of Spraguea to include monomorphic forms and the transfer of Glugea americanus to Spraguea americana comb. n. Since no major differences in ultrastructure or SSU rDNA sequence data exist between Spraguea americana and the microsporidian from the Japanese anglerfish, they evidently belong to the same species. This report of Spraguea americana is the first report of a Spraguea species from L. litulon and indeed from the Pacific water mass.
The nitric oxide/cGMP system has been shown to play a crucial role in the mechanism of learning and memory. The aim of the present study was to investigate whether the inhibition of NO synthase in brain regions leads to alterations of spontaneous behavior in rats. Male Wistar rats were treated with NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) at the dose of 40 mg/kg/day. After 4 weeks of L-NAME treatment, NO synthase activity was significantly decreased by 75 % in the cerebellum, by 71 % in the cerebral cortex and by 72 % in the thoracic spinal cord. Decreased NO synthase activity in the nervous tissue was associated with decreased motor horizontal and vertical activities as well as by lowered frequency of sniffing, cleaning and defecation. It is concluded that the inhibition of NO synthase activity has a suppressive effect on spontaneous behavior of rats., L. Halčák, O. Pecháňová, Z. Žigová, L. Klemová, M. Novacký, I. Bernátová., and Obsahuje bibliografii