Hyperhomocysteinemia has been suggested to induce hypertension due to its role in endothelial dysfunction. However, it remains controversial whether homocysteine and hypertension are truly causally related or merely loosely associated. To test the hypothesis that hyperhomocysteinemia occurs in spontaneously hypertensive rats (SHR) we measured plasma levels of homocysteine in 10 male adult SHR and in 10 normotensive controls using ion exchange chromatography. In addition, plasma concentrations of the 22 most common amino acids were measured to explore the relation of homocysteine with amino acid metabolism. Plasma levels of homocysteine were significantly lower in SHR (4.1±0.1 μmol/l) than in controls (7.2±0.3 μmol/l) (p<0.00001). The amounts of aminobutyric acid, alanine, citrulline and valine were also decreased, whereas we found increased levels of aspartate, glutamate, glutamine, histidine and ornithine. Thus, contrary to our hypothesis, hypertension in SHR occurs despite low plasma levels of homocysteine. We provide a new hypothesis whereby reduced conversion of arginine to citrulline is related to increased ornithine levels, but decreased bioavailability of nitric oxide, resulting in impaired blood vessel relaxation and hypertension. In conclusion, our findings do not necessarily exclude that homocysteine and hypertension might be pathophysiologically connected, but corroborate the notion that hypertension can arise due to mechanisms independent of high homocysteine levels., D. Kondziella, H. Zetterberg, E. Haugen, M. Fu., and Obsahuje bibliografii a bibliografické odkazy
There are five subtypes of muscarinic receptors that serve various important physiological functions in the central nervous system and the periphery. Mental functions like attention, learning, and memory are attributed to the muscarinic M1 subtype. These functions decline during natural aging and an early deficit is typical for Alzheimer´s disease. In addition, stimulation of the M1 receptor increases non-amyloidogenic processing of the amyloid precursor protein and thus prevents accumulation of noxious β-amyloid fragments. The selectivity of classical muscarinic agonists among receptor subtypes is very low due to the highly conserved nature of the orthosteric binding site among receptor subtypes. Herein we summarize some recent studies with the functionally-selective M1 agonist xanomeline that indicate complex pharmacological profile of this drug that includes interactions with and activation of receptor from both orthosteric and ectopic binding sites, and the time-dependent changes of ligand binding and receptor activation. These findings point to potential profitability of exploitation of ectopic ligands in the search for truly selectiev muscarinic receptor agonists., J. Jakubík, P. Michal, E. Machová, V. Doležal., and Obsahuje bibliografii a bibliografické odkazy