Let $G$ be a weighted hypergraph with edges of size at most 2. Bollobás and Scott conjectured that $G$ admits a bipartition such that each vertex class meets edges of total weight at least $(w_1-\Delta_1)/2+2w_2/3$, where $w_i$ is the total weight of edges of size $i$ and $\Delta_1$ is the maximum weight of an edge of size 1. In this paper, for positive integer weighted hypergraph $G$ (i.e., multi-hypergraph), we show that there exists a bipartition of $G$ such that each vertex class meets edges of total weight at least $(w_0-1)/6+(w_1-\Delta_1)/3+2w_2/3$, where $w_0$ is the number of edges of size 1. This generalizes a result of Haslegrave. Based on this result, we show that every graph with $m$ edges, except for $K_2$ and $K_{1,3}$, admits a tripartition such that each vertex class meets at least $\lceil{2m}/5\rceil$ edges, which establishes a special case of a more general conjecture of Bollobás and Scott., Qinghou Zeng, Jianfeng Hou., and Obsahuje bibliografické odkazy
A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop {\mathrm Hom}\nolimits $ groups and higher $\mathop {\mathrm Ext}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb{Z} /(p)$-vector space $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition.
We examine the q-Pell sequences and their applications to weighted partition theorems and values of L-functions. We also put them into perspective with sums of tails. It is shown that there is a deeper structure between two-variable generalizations of Rogers-Ramanujan identities and sums of tails, by offering examples of an operator equation considered in a paper published by the present author. The paper starts with the classical example offered by Ramanujan and studied by previous authors noted in the introduction. Showing that simple combinatorial manipulations give rise to an identity published by the present author, a weighted form of a Lebesgue partition theorem is given as the main application to partitions. The conclusion of the paper summarizes some directions for further research, pointing out that certain conditions on the q-polynomial would be desired, and also possibly looking at the operator equation in the present paper from the position of using modular forms., Alexander E. Patkowski., and Obsahuje bibliografii