A reflexive topological group $G$ is called strongly reflexive if each closed subgroup and each Hausdorff quotient of the group $G$ and of its dual group is reflexive. In this paper we establish an adequate concept of strong reflexivity for convergence groups. We prove that complete metrizable nuclear groups and products of countably many locally compact topological groups are BB-strongly reflexive.
Throughout this abstract, $G$ is a topological Abelian group and $\widehat{G}$ is the space of continuous homomorphisms from $G$ into the circle group $\mathbb{T}$ in the compact-open topology. A dense subgroup $D$ of $G$ is said to determine $G$ if the (necessarily continuous) surjective isomorphism $\widehat{G}\twoheadrightarrow \widehat{D}$ given by $h\mapsto h\big |D$ is a homeomorphism, and $G$ is determined if each dense subgroup of $G$ determines $G$. The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is determined. The authors offer several related results, including these. 1. There are (many) nonmetrizable, noncompact, determined groups. 2. If the dense subgroup $D_i$ determines $G_i$ with $G_i$ compact, then $\oplus _iD_i$ determines $\Pi _i G_i$. In particular, if each $G_i$ is compact then $\oplus _i G_i$ determines $\Pi _i G_i$. 3. Let $G$ be a locally bounded group and let $G^+$ denote $G$ with its Bohr topology. Then $G$ is determined if and only if ${G^+}$ is determined. 4. Let $\mathop {\mathrm non}({\mathcal N})$ be the least cardinal $\kappa $ such that some $X \subseteq {\mathbb{T}}$ of cardinality $\kappa $ has positive outer measure. No compact $G$ with $w(G)\ge \mathop {\mathrm non}({\mathcal N})$ is determined; thus if $\mathop {\mathrm non}({\mathcal N})=\aleph _1$ (in particular if CH holds), an infinite compact group $G$ is determined if and only if $w(G)=\omega $. Question. Is there in ZFC a cardinal $\kappa $ such that a compact group $G$ is determined if and only if $w(G)<\kappa $? Is $\kappa =\mathop {\mathrm non}({\mathcal N})$? $\kappa =\aleph _1$?