Caragana korshinskii Kom. is a perennial xerophytic shrub, well known for its ability to resist drought. In order to study ecophysiological responses of C. korshinskii under extreme drought stress and subsequent rehydration, diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem II as well as Chl content were analyzed. Plant responses to extreme drought included (1) leaf abscission and using stem for photosynthesis, (2) improved instantaneous water-use efficiency, (3) decreased photosynthetic rate and partly closed stomata owing to leaf abscission and low water status, (4) decreased maximum photochemical efficiency of photosystem II (PSII) (variable to maximum fluorescence ratio, Fv/Fm), quantum efficiency of noncyclic electron transport of PSII, and Chl a and Chl b. Four days after rehydration, new leaves budded from stems. In the rewatered plants, the chloroplast function was restored, the gas exchange and Chl fluorescence returned to a similar level as control plant. The above result indicated that maintaining an active stem system after leaf abscission during extreme drought stress may be the foundation which engenders these mechanisms rapid regrowth for C. korshinskii in arid environment., D. H. Xu ... [et al.]., and Obsahuje bibliografii
We studied growth and photosynthesis of cucumber (Cucumis sativus) seedlings under two vapor-pressure deficit levels (VPD; 0.4 and 3.0 kPa), two salinity levels (0 mM and 34 mM NaCl), and two CO2 concentrations ([CO2]; 400 and 1,000 μmol mol-1). Relative growth rate (RGR) decreased with increasing VPD, but the causal factor differed between salinity levels and CO2 concentrations. Under ambient [CO2], RGR decreased with increasing VPD at low salinity mainly due to decreased leaf area ratio (LAR), and decreased net assimilation rate (NAR) at high salinity. The decrease in intercellular [CO2] (Ci) with decreasing stomatal conductance caused by high VPD did not significantly limit net photosynthetic rate (PN) at low salinity, but PN was potentially limited by Ci at high salinity. At high [CO2], high VPD reduced LAR, but did not affect NAR. This is because the decrease in Ci occurred where slope of PN-Ci curve was almost flat., T. Shibuya, K. Kano, R. Endo, Y. Kitaya., and Obsahuje bibliografii
Natural and commercial Salix clones differ in their ecophysiological response to Zn stress This study was carried out to determine the effect of different zinc concentrations on the ecophysiological response of Salix clones: four commercial clones (“1962”, “1968”, “Drago”, and “Levante”) selected for short rotation coppice, and one natural clone, “Sacco”, obtained from a contaminated area. Gas exchanges, chlorophyll a fluorescence (JIP-test), relative chlorophyll content, and biometric parameters were measured in plants grown for fifteen days in soil containing Zn concentrations of 0, 300, 750, and 1,500 mg(ZnCl2) kg-1. Ecophysiological response to metal stress differed in dependence on the Zn concentration and clone. At the low Zn concentration (300 mg kg-1), the absence of any significant reductions in parameters investigated indicated an efficient plant homeostasis to maintain the metal content within phytotoxic limits. Stomatal limitation, observed at 750 and 1,500 mg kg-1, which was found in all clones after three days of the treatment, might be caused by indirect effects of metal on guard cells. Among commercial clones, “Drago” was more sensitive to Zn stress, showing inhibition of growth, while “1962” clone showed a downregulation of PSII photochemistry following the slowdown in the Calvin-Benson cycle. On the contrary, the natural Salix clone (“Sacco”) performed better compared to the other clones due to activation of a photosynthetic compensatory mechanism., A. Bernardini, E. Salvatori, S. Di Re, L. Fusaro, G. Nervo, F. Manes., and Obsahuje seznam literatury
Many stress-induced genes, including those related to the insect humoral immune response, are upregulated during diapause even in the absence of stress. We further test the relationship between stress genes and diapause in Sarcophaga crassipalpis by cloning sarcotoxin II, a member of the attacin family, and examining its expression pattern in relation to pupal diapause. Unlike several other stress-related genes, sarcotoxin II is not developmentally upregulated during diapause, but it remains fully responsive to immune challenge. Interestingly, the elevation of sarcotoxin II mRNA in response to body wall injury, but not immune challenge, is initiated more slowly and persists longer in diapausing pupae than in nondiapausing individuals.