In this study, applications of well-known neural networks such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) for wheat grain classification into three species are comparatively presented. The species of wheat grains which are Kama (#70), Rosa (#70) and Canadian (#70) are designated as outputs of neural network models. The classification is carried out through data of wheat grains (#210) acquired using X-ray technique. The data set includes seven grain's geometric parameters: Area, perimeter, compactness, length, width, asymmetry coefficient and groove length. The neural networks input with the geometric parameters are trained through 189 wheat grain data and their accuracies are tested via 21 data. The performance of neural network models is compared to each other with regard to their accuracy, efficiency and convenience. For testing data, the ANN, ANFIS and SVM models numerically calculate the outputs with mean absolute error (MAE) of 0.014, 0.018 and 0.135, and classify the grains with accuracy of 100 %, 100% and 95.23 %, respectively. Furthermore, data of 210 grains is synthetically increased to 3210 in order to investigate the proposed models under big data. It is seen that the models are more successful if the size of data is increased, as well. These results point out that the neural networks can be successfully applied to classification of agricultural grains whether they are properly modelled and trained.
In this study Active Learning Method (ALM) as a novel fuzzy modeling approach is compared with optimized Support Vector Machine (SVM) using simple Genetic Algorithm (GA), as a well known datadriven model for long term simulation of daily streamflow in Karoon River. The daily discharge data from 1991 to 1996 and from 1996 to 1999 were utilized for training and testing of the models, respectively. Values of the Nash-Sutcliffe, Bias, R2 , MPAE and PTVE of ALM model with 16 fuzzy rules were 0.81, 5.5 m3 s -1, 0.81, 12.9%, and 1.9%, respectively. Following the same order of parameters, these criteria for optimized SVM model were 0.8, -10.7 m3 s-1, 0.81, 7.3%, and -3.6%, respectively. The results show appropriate and acceptable simulation by ALM and optimized SVM. Optimized SVM is a well-known method for runoff simulation and its capabilities have been demonstrated. Therefore, the similarity between ALM and optimized SVM results imply the ability of ALM for runoff modeling. In addition, ALM training is easier and more straightforward than the training of many other data driven models such as optimized SVM and it is able to identify and rank the effective input variables for the runoff modeling. According to the results of ALM simulation and its abilities and properties, it has merit to be introduced as a new modeling method for the runoff modeling. and Cieľom štúdie bolo porovnať možnosti dlhodobej simulácie denných prietokov v rieke Karoon pomocou novovyvinutej fuzzy metódy aktívneho učenia (Active Learning Method - ALM) a známej metódy vektormi podporených strojov (Support Vector Machine - SVM), optimalizovanej genetickým algoritmom (GA). Na tréning a testovanie modelov boli použité časové rady denných prietokov za obdobie rokov 1991 až 1996 a 1996 až 1999. Hodnoty parametrov Nash-Sutcliffe, Bias, R2 , MPAE a PTVE pre model ALM boli 0,81; 5,5 m3 s-1; 0,81; 12,9% a 1,9%. Parametre v tom istom poradí pre model SVM boli 0,8 -10,7 m3 s-1, 0,81; 7,3%; a -3,6%. Z výsledkov simulácií vyplýva, že aplikáciou metód ALM a SVM možno získať porovnateľné a akceptovateľné výsledky. Podobnosť výsledkov medzi ALM a SVM implikuje vhodnosť novovyvinutej metódy ALM pre simuláciu odtoku. Tréning ALM je ľahší a jednoduchší ako je tréning ďalších dátami riadených modelov podobného typu. Navyše algoritmus ALM je schopný identifikovať a zoradiť efektívne vstupné premenné pre modelovanie odtoku. Na základe dosiahnutých výsledkov možno metódu ALM zaradiť medzi nové, alternatívne metódy modelovania odtoku.