Purpose of this work is to show that the Particle Swarm Optimization Algorithm may improve the results of some well known Machine Learning methods in the resolution of discrete classification problems. A binary version of the PSO algorithm is used to obtain a set of logic rules that map binary masks (that represent the attribute values), to the available classes. This algorithm has been tested both in a single pass mode and in an iterated mode on a well-known set of problems, called the MONKS set, to compare the PSO results against the results reported for that domain by the application of some common Machine Learning algorithms.
Digital Watermarking (DW) based on computational intelligence (CI) is currently attracting considerable interest from the research community. This article provides an overview of the research progress in applying CI methods to the problem of DW. The scope of this review will encompass core methods of CI, including rough sets (RS), fuzzy logic (FL), artificial neural networks (ANNs), genetic algorithms (GA), swarm intelligence (SI), and hybrid intelligent systems. The research contributions in each field are systematically summarized and compared to highlight promising new research directions. The findings of this review should provide useful insights into the current DW literature and be a good source for anyone who is interested in the application of CI approaches to DW systems or related fields. In addition, hybrid intelligent systems are a growing research area in CI.