GNSS meteorology is the remote sensing of the atmosphere (particularly troposphere) using Global Navigation Satellite Systems (GNSS) to deliver information about its state. The two currently available navigation satellite systems are the Global Positioning System (GPS) and the GLObal'naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) maintained by the United States and Russia, respectively. The Galileo navigation satellite system, which is under supervision of the European Space Agency (ESA), is expected to be completed within the time frame of a few years. Continuous observations from GNSS receivers provide an excellent tool for studying the earth’s atmosphere. The GNSS meteorology has reached a point, where there is a need to improve methods not only to compute Integrated Water Vapor over the GNSS receiver, but also to investigate the water vapor distribution in space and time (4DWVD). Since 2008, the new national permanent GNSS network ASG-EUPOS (98 stations) has been established in Poland. 17 Polish stations equipped with GNSS receivers and uniform meteorological sensors work currently in the frame of the European Permanent Network. This paper presents the concept of the integrated investigations for NRT atmosphere model construction based on the GNSS and meteorological observations from ASG-EUPOS stations., Jarosław Bosy, Witold Rohm and Jan Sierny., and Obsahuje bibliografii
A digital holographic interferometry (DHI) for 3D measurement of temperature distributions in moving fluid is presented in this paper. The measurement uses digital holographic setup for measurement of a flow of fluid propagated through an orifice and tomographic approach for 3D reconstruction of the flow. The periodic character of the flow and synchronization between the digital camera and external trigger driving the phenomenon allows us to measure phenomena with much higher frequency when compared to frame rate of the digital camera. Furthermore one can capture a large number of the flow projections from different viewing directions which are later used for 3D tomographic reconstruction of the whole temperature field of the flow. The measurement results are verified and compared with hot wire method (CTA) in the paper. and Tento článek popisuje metodu digitální holografické interferometrie (DHI) pro 3D měření rozložení tepla v pohybující se tekutině. V experimentu je pomocí digitálního holografického uspořádání měřena teplota tekutiny proudící skrze otvor. Periodický charakter proudění spolu se synchronizací kamery a ovládání proudění umožňuje zaznamenat velké množství 2D projekcí proudu z různých směrů pozorování. Ty pak slouží jako vstupní data pro tomografickou rekonstrukci teplotního rozložení tekutiny. V článku jsou prezentovány výsledky měření a jejich verifikace pomocí drátkové metody CTA.