The maximum nullity over a collection of matrices associated with a graph has been attracting the attention of numerous researchers for at least three decades. Along these lines various zero forcing parameters have been devised and utilized for bounding the maximum nullity. The maximum nullity and zero forcing number, and their positive counterparts, for general families of line graphs associated with graphs possessing a variety of specific properties are analysed. Building upon earlier work, where connections to the minimum rank of line graphs were established, we verify analogous equations in the positive semidefinite cases and coincidences with the corresponding zero forcing numbers. Working beyond the case of trees, we study the zero forcing number of line graphs associated with certain families of unicyclic graphs., Shaun Fallat, Abolghasem Soltani., and Obsahuje seznam literatury
Zero forcing number has recently become an interesting graph parameter studied in its own right since its introduction by the ''AIM Minimum Rank–Special Graphs Work Group'', whereas metric dimension is a well-known graph parameter. We investigate the metric dimension and the zero forcing number of some line graphs by first determining the metric dimension and the zero forcing number of the line graphs of wheel graphs and the bouquet of circles. We prove that Z(G) ≤ 2Z(L(G)) for a simple and connected graph G. Further, we show that Z(G) ≤ Z(L(G)) when G is a tree or when G contains a Hamiltonian path and has a certain number of edges. We compare the metric dimension with the zero forcing number of a line graph by demonstrating a couple of inequalities between the two parameters. We end by stating some open problems.