Aircraft engine lubricating oil monitoring by process neural network
- Title:
- Aircraft engine lubricating oil monitoring by process neural network
- Creator:
- Gang, Ding and Shisheng, Zhong
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:590bc684-8082-415e-8545-5f572ec466cd
uuid:590bc684-8082-415e-8545-5f572ec466cd - Subject:
- Lubricating oil monitoring, process neural network (PNN), Time series prediction, aircraft engine condition monitoring, and orthogonal basis function
- Type:
- model:article and TEXT
- Format:
- bez média and svazek
- Description:
- The aircraft engine lubricating oil monitoring is essential in terms of the flight safety and also for reduction of the maintenance cost. The concentration of metal elements in the lubricating oil includes a large amount of information about the health condition of the aircraft engine. By monitoring the lubricating oil, maintenance engineers can judge the performance deterioration of the aircraft engine and can find the latent mechanical faults in the aircraft engine in advance. But it is difficult for traditional methods to predict the tendency of the mental elements concentration in the lubricating oil. In this paper, a time series prediction method based on process neural network (PNN) is proposed to solve this problem. The inputs and the connection weights of the PNN are time-varied functions. A corresponding learning algorithm is developed. To simplify the learning algorithm, a set of appropriate orthogonal basis functions are introduced to expand the input functions and the connection weight functions of the PNN. The effectiveness of the proposed method is proved by the Mackey-Glass time series prediction. Finally, the proposed method is utilized to predict the Fe concentration in the aircraft engine lubricating oil monitoring, and the test results indicate that the proposed model seems to perform well and appears suitable for using as a predictive maintenance tool.
- Language:
- English
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/
policy:public - Source:
- Neural network world: international journal on neural and mass-parallel computing and information systems | 2006 Volume:16 | Number:1
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/publicdomain/mark/1.0/
- policy:public