Buffering agent via insulin-mediated activation of PI3K/AKT signaling pathway to regulate lipid metabolism in lactating goats
- Title:
- Buffering agent via insulin-mediated activation of PI3K/AKT signaling pathway to regulate lipid metabolism in lactating goats
- Creator:
- Li, L, He, M. L, Wang, K, and Zhang, Y. S
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:c42caafd-11aa-4491-98cf-d7d8dcabccf3
uuid:c42caafd-11aa-4491-98cf-d7d8dcabccf3
issn:0862-8408 - Subject:
- metabolismus lipidů, lipid metabolism, high-concentrate diet, C4H7NaO2, NaHCO3, PI3K/AKT signaling pathway, 14, and 612
- Type:
- model:article and TEXT
- Format:
- print, bez média, and svazek
- Description:
- Ruminants are often fed a high-concentrate (HC) diet to meet lactating demands, yet long-term concentrate feeding induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat. Buffering agent could enhance the acid base buffer capacity and has been used to prevent ruminant rumen SARA and improve the content of milk fat. Therefore, we tested whether a buffering agent increases lipid anabolism in the livers of goats and influences of milk fat synthesis. Twelve Saanen-lactating goats were randomly assigned to two groups: one group received a HC diet (Concentrate: Forage=60:40, Control) and the other group received the same diet with a buffering agent added (10 g sodium butyrate, C4H7NaO2; 10 g sodium bicarbonate, NaHCO3; BG) over a 20-week experimental period. Overall, milk fat increase (4.25±0.08 vs. 3.24±0.10; P<0.05), and lipopolysaccharide levels in the jugular (1.82±0.14 vs. 3.76±0.33) and rumen fluid (23,340±134 vs. 42,550±136) decreased in the buffering agent group (P<0.05). Liver consumption and release of nonesterified fatty acid (NEFA) into the bloodstream increased (P<0.05). Phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and ribosomal protein S6 kinase (p70S6K) up-regulated significantly in the livers of the buffering agent group (P<0.05). It also up-regulated expression of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) and its downstream targets involved in fatty acid synthetic, including fatty acid synthetase (FAS), stearoyl-CoA desaturase (SCD-1) and acetyl-CoA carboxylase 1 (ACC1) (P<0.05). The BG diet increased insulin levels in blood (19.43±0.18 vs. 13.81±0.10, P<0.05), and insulin receptor was likewise elevated in the liver (P<0.05). Cumulatively, the BG diet increased plasma concentrations of NEFA by INS-PI3K/AKTSREBP- 1c signaling pathway promoting their synthesis in the liver., L. Li, M. L. He, K. Wang, Y. S. Zhang., and Obsahuje bibliografii
- Language:
- English
- Rights:
- http://creativecommons.org/publicdomain/mark/1.0/
policy:public - Source:
- Physiological research | 2018 Volume:67 | Number:5
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/publicdomain/mark/1.0/
- policy:public