A general synchronization method is proposed for a class of nonlinear chaotic systems involving uncertain parameters and nonlinear transmitted signals. Under some mild conditions, it shows that the class of nonlinear chaotic systems can be treated as linear time-varying systems driven by the additive white noise contaminated at the receiver, or the observed output. Synchronization can be achieved by using Kalman filtering technology. We present some sufficient conditions under which the states of the driven system are able to track the states of the drive system asymptotically, and good tracking performance can be obtained in the presence of the additive white noise involved in the observed output.
Rhabdomyosarcoma (RMS) is a malignant tumour of soft tissues, occurring mainly in children and young adults. RMS cells derive from muscle cells, which due to mutations and epigenetic
modifications have lost their ability to differentiate. Epigenetic modifications regulate expression of genes responsible for cell proliferation, maturation, differentiation and apoptosis. HDAC inhibitors suppress histone acetylation; therefore, they are a promising tool used in cancer therapy. Trichostatin A (TsA) is a
pan-inhibitor of HDAC. In our study, we investigated the effect of TsA on RMS cell biology. Our findings strongly suggest that TsA inhibits RMS cell proliferation, induces cell apoptosis, and reactivates tumour cell differentiation. TsA up-regulates miR-27b expression, which is involved in the process of myogenesis. Moreover, TsA increases susceptibility of RMS cells to routinely used chemotherapeutics. In conclusion, TsA exhibits anti-cancer properties, triggers differentiation, and thereby can complement an existing spectrum of chemotherapeutics used in RMS therapy. and Corresponding author: Maciej Tarnowski