Black rats (Rattus rattus) are native to the Indian subcontinent but have now colonized most continents and islands following human movements and international trade. They are involved in the circulation and transmission to humans of many zoonotic agents as well as in massive damage to food stocks and native biodiversity in the regions they have settled. This study investigates the genetic diversity and possible origins of black rats from Benin, West Africa. We sequenced the complete mitochondrial cytochrome b gene in 90 individuals from nine localities in Benin. These sequences were subsequently compared to 390 other cytochrome b haplotypes from individuals from various European, Asian, American and African localities. Nucleotide polymorphism analysis, haplotype network and maximum likelihood phylogenetic tree reconstructions showed low mitochondrial diversity in black rats from Benin. Our results also suggest at least two distinct introduction events: one introduction probably occurred during the spice trade (15th-17th century) through the Indies Road connecting Europe to Asia. Other introduction events could have occurred more recently following the intensification of globalized trade from the eighteenth century, and onwards.
The study aimed to recognize whether the activity of a semi-aquatic invasive carnivore – the American mink Neovison vison – is related to the distribution of waterbird colonies. For this reason, we monitored mink occurrence in lake reedbeds and the fate of artificial nests imitating those of the great crested grebe Podiceps cristatus. The location of artificial nests in the grebe colony increased the probability of their survival compared to those placed outside the grebe colony. During the study, mink activity increased over time. In general, it was lower in colonies than outside of them, suggesting that the presence of natural nests does not increase the probability of mink occurrence in lake reedbeds. However, mink activity was negatively correlated with the distance from the lake shoreline and differed spatially according to the presence or absence of natural grebe nests. In grebe colonies, the probability of mink occurrence at greater distances from the lake shoreline was higher than outside, which can be explained by optimizing swimming effort while searching for prey. In conclusion, mink activity in colonies was lower than in areas with no waterbird nests, and nest location in a colony decreased predation risk by mink.