Uniform flow in compound channels has been studied in terms of a numerical model, called the NKE model. The model uses the three dimensional Navier-Stokes equations in conjunction with the non-linear k-ε turbulence model. The latter is used for the calculation of the Reynolds stress components responsible for the generation of the secondary currents. This model is based on the SIMPLE technique, and computes the six parameters U, V, W, P, k, and ε using wall functions on a Cartesian grid. The NKE model was used to simulate the compound open channel flows of the UK Flood Channel Facility run 080301 (Shiono and Knight, 1989). The Reynolds Stress Model (RSM) of FLUENT was also used as a comparison. The results obtained have shown that the NKE and RSM models can reasonably predict the primary mean velocity and secondary currents. Although agreement is certainly not perfect in every detail, the main features of the flow are reproduced. The bulging of the contours at the bottom corner of the main channel, the inclination of the contours near the free surface towards the channel centre, and the depression of the maximum velocity below the free surface can be seen. These are consistent with the pattern of the secondary flows, which are mainly formed by two vortices, namely the main channel vortex and flood plain vortex. These vortices, which originate near the main channel-flood plain junction, can be reproduced by the NKE and RSM models. and Štúdia pomocou numerického modelu NKF analyzuje ustálený rovnomerný prúd vody v koryte zloženom z kinety a dvoch symetrických beriem so zvislými stranami. Model využíva tri rovnice Naviera- Stokesa a nelineárny k-ε model turbulencie, ktorý simuluje Reynoldsove napätia, zodpovedné za druhotné prúdy. Tento model, založený na tzv. SIMPLE technike, počíta šesť parametrov U, V, W, P, k a ε pri použití stenových funkcií a karteziánskej siete. NKE model simuloval prúdenie, experimentálne pozorované na zariadení UK Flood Channel Facility ako séria č. 080301 (Shiono a Knight, 1989). Model pre Reynoldsove napätia (RSM) z balíka FLUENT bol tiež využitý na porovnanie. Výsledky ukázali, že modely NKE a RSM sú schopné predpovedať ako základné rýchlostné pole, tak aj vyvolané druhotné prúdenia. Aj keď zhoda s experimentom nie je v každom detaile úplná, hlavné znaky rýchlostného poľa sú zobrazené. Na simulácii možno vidieť zaoblenie rýchlostného poľa v rohoch dna hlavného kanála, sklon poľa v blízkosti hladiny smerom do stredu, ako aj pokles maxima rýchlosti pod voľnú hladinu. Tieto efekty sú v súlade s obrazom druhotných prúdov, ktoré sú tvorené hlavne dvoma vírmi - vírom kinety a vírom bermy. Tieto víry, vznikajúce pri spojení kinety s bermou, môžu byť reprodukované modelmi NKE a RSM.
Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point.
The tegument ultrastructure of the cestode Triaenophorus nodulosus has been studied in the stages of oncosphere, procercoid, plerocercoid and adult. The syncytium of primary tegument has glandular origin and is located in the peripheral areas of the oncosphere. The primary tegument degenerates at the initial stages of the procercoid development and is replaced with secondary tegument persisting throughout all following stages of the worm’s development. Two ways of microthrix formation on the body surface of procercoid were discovered. The formation of the cyst consisting of fibrillar material around the plerocercoid was observed. It fills spaces between numerous finger-like évaginations of plerocercoid’s tegument. The structural differentiation of tegument and microtriches was demonstrated on the scolex and all parts of strabila of T. nodulosus.
Test stand for investigation of the influence of bearing bushing movement control on behaviour of a rigid rotor supported in sliding journal bearings was designed. The stand was equipped with two pairs of piezoactuators, enabling to move each bearing bushing in two directions, and with two pairs of relative sensors tracing shaft movement at both bearings. The initial tests showed quite unexpected phenomena, which should be cleared up, before experiments with controlled bearing bushing movement could be started. Finally the system began to operate according to predictions and it was possible to start intended experiments. Some results of the rotor behaviour with and without piezoactuator action are presented.