Recently, the topic of construction methods for triangular norms (triangular conorms), uninorms, nullnorms, etc. has been studied widely. In this paper, we propose construction methods for triangular norms (t-norms) and triangular conorms (t-conorms) on bounded lattices by using interior and closure operators, respectively. Thus, we obtain some proposed methods given by Ertuğrul, Karaçal, Mesiar [15] and Çaylı [8] as results. Also, we give some illustrative examples. Finally, we conclude that the introduced construction methods can not be generalized by induction to a modified ordinal sum for t-norms and t-conorms on bounded lattices.
Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples.
In this paper, we study on the direct product of uninorms on bounded lattices. Also, we define an order induced by uninorms which are a direct product of two uninorms on bounded lattices and properties of introduced order are deeply investigated. Moreover, we obtain some results concerning orders induced by uninorms acting on the unit interval [0,1].