Artificial neural networks (ANN) are one of the highly preferred artificial intelligence techniques for brain image segmentation. The commonly used ANN is the supervised ANN, namely Back Propagation Neural Network (BPN). Even though BPNs guarantee high efficiency, they are computationally non-feasible due to the huge convergence time period. In this work, the aspect of computational complexity is tackled using the proposed high speed BPN algorithm (HSBPN). In this modified approach, the weight vectors are calculated without any training methodology. Magnetic resonance (MR) brain tumor images of three stages, namely severe, moderate and mild, are used in this work. An extensive feature set is extracted from these images and used as input for the neural network. A comparative analysis is performed between the conventional BPN and the HSBPN in terms of convergence time period and segmentation efficiency. Experimental results show the superior nature of HSBPN in terms of the performance measures.
Artificial Neural Network (ANN) is the primary automated AI system preferred for medical applications. Even though ANN possesses multiple advantages, the convergence of the ANN is not always guaranteed for the practical applications. This often results in the local minima problem and ultimately yields inaccurate results. This convergence problem is common among ANNs and especially in Kohonen neural networks which employ unsupervised training methodology. In this work, an Efficient Kohonen Fuzzy Neural (EKFN) network is proposed to eliminate the iteration dependent nature of the conventional system. The suitability of this hybrid automated system is illustrated in the context of pathology identification in retinal images. This disease identification system includes anatomical structure segmentation from retinal images followed by image classification. The performance measures used are accuracy, sensitivity, specificity, positive predictive value and positive likelihood ratio. Experimental results show promising possibilities for the hybrid systems in terms of performance measures.