Opioid peptides have been recognized as modulators of reactive oxygen species (ROS) in mouse macrophages and human neutrophils. Since the effect cannot be ascribed to its direct scavenger properties, in this study, we tested the hypothesis that methionine-enkephalin (MENK) modulates ROS by alteration of antioxidant enzyme activity (AOE). For this purpose superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) are measured in red blood cells of 1, 4, 10, and 18-month-old CBA mice of both sexes injected with 10 mg/kg MENK. The results indicate that MENK-affected antioxidant enzyme
activity of red blood cells is age- but not sex-related. The most abundant effects were observed at the reproductive stage. Increased se
nsitivity to oxidative stress by opioid peptides was in both sexes mainly due to increased SOD activity followed by GPX decrease. Thus, the damage ascribed to opioid peptides might be, at least partly, ascribed to deleterious effects of accumulated hydrogen peroxide (H2O2).