Gravity-driven open-channel flows carrying coarse sediment over an erodible granular deposit are studied. Results of laboratory experiments with artificial sediments in a rectangular tilting flume are described and analyzed. Besides integral quantities such as flow rate of mixture, transport concentration of sediment and hydraulic gradient, the experiments include measurements of the one-dimensional velocity distribution across the flow. A vertical profile of the longitudinal component of local velocity is measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods. Due to strong flow stratification, the velocity profile covers regions of very different local concentrations of sediment from virtually zero concentration to the maximum concentration of bed packing. The layered character of the flow results in a velocity distribution which tends to be different in the transport layer above the bed and in the sediment-free region between the top of the transport layer and the water surface. Velocity profiles and integral flow quantities are analyzed with the aim of evaluating the layered structure of the flow and identifying interfaces in the flow with a developed transport layer above the upper plane bed.
Intense transport of sediment is studied in flows of steep slopes. Transport- and friction formulae suitable for flows at high shear stress above eroded bed are discussed. The formulae are further incorporated to a proposed simple model for open-channel flow with gradually varied transport of sediment. Two variants of the formulae are used alternatively in the model. Tilting-flume experiments are described that provided steady-flow data suitable for a validation of the formulae and unsteady-sediment-transport data for a validation of the designed model of gradually varied transport. A comparison of experimental results with formulae predictions and model simulations shows a very reasonable agreement for both variants of the transport and friction formulae. and Obsahuje seznam literatury a znaků
Detailed data on the long-term performance of bioretention cells (BC) for stormwater management are sparse. This research aimed at setting up and testing an infrastructure that will provide the data on hydrologic and chemical performance of BC. Two identical experimental BC’s were built. The monitoring methodology monitoring was developed and tested during a first growing season with the first BC supplied with natural rainfall, while the second BC was used for ponding experiments. Key layer of the BCs, a biofilter, was composed of sand, compost and topsoil. Both BCs are equipped with sensors monitoring the components of water balance and the water potential of the biofilter. High levels of total suspended solids were detected in the outflow. The runoff coefficient for the entire period of the growing season was 0.72 in the first BC and 0.86 in the second BC, while the peak outflow reduction for individual rainfall episodes ranged between 75% to 95% for the first BC and 19% to 30% for the second BC. Saturated hydraulic conductivity of the biofilter in the first BC decreased by two orders of magnitudes after the first year of operation. Retention curves of the biofilter changed due to material consolidation.