Larvae of Rhipsideigma raffrayi are described in detail and those of Distocupes varians are re-examined. Their morphological structures are evaluated with respect to their functional and phylogenetic significance. Larvae of Rhipsideigma are wood-borers with a straight body and a wedge-shaped head capsule. Most of their apomorphic features are correlated with their xylobiontic habits. The strong mandibles, the sclerotized ligula and the wedge-shaped head enable the larvae to penetrate rotting wood. The broadened prothorax, prosternal asperities, tergal ampullae, the short legs, and eversible lobes of segment IX play an important role in locomotion in galleries within rotting wood. Leg muscles are weakly developed, whereas the dorsal, pleural and ventral musculature is complex. The larval features allow Rhipsideigma to be placed in the clades Archostemata, Cupedidae + Micromalthidae, Cupedidae, Cupedidae excl. Priacma, and Cupedidae excl. Priacma and Distocupes. The monophyly of Cupedidae and Cupedidae, excluding Priacma, so far is only supported by apomorphies of the adults. However, the presence of glabrous patches on the prosternum and of a medially divided field of asperities may be larval apomorphies of the family. A clade, which comprises Rhipsideigma, Tenomerga and probably other genera of Cupedidae with hitherto unknown larvae, is well supported by larval apomorphies such as the broadened prothorax, the presence of coxal asperities and the presence of a distinct lateral longitudinal bulge. Increased numbers of antennomeres and labial palpomeres are apomorphies only found in larvae of Distocupes.
A provisional larval groundplan of the family Hygrobiidae is provided through descriptions of internal and external features of three of six extant species, Hygrobia hermanni (Fabricius, 1775), H. wattsi Hendrich 2001 and H. australasiae (Clark, 1862) and phylogenetic interpretations. Hygrobiidae larvae are morphologically differing dramatically from all other known Adephaga by 20 autapomorphies. Structures involved with feeding, i.e., mouthparts, prepharynx and foregut are highly modified as a result of a specialisation on small tubificid worms and chironomid larvae. A placement of Hygrobiidae within Dytiscoidea is well supported by the reduced condition of the terminal abdominal segments, and the presence of 10 ancestral setae on femur and a clade comprising Hygrobiidae, Amphizoidae, and Dytiscidae by the presence of thin and elongate caudal tentorial arms, a very strong musculus verticopharyngalis and a longitudinally divided adductor tendon of the mandible. A highly modified foregut, reduced terminal spiracles VIII and the presence of tubular gills are features which distinguish hygrobiid larvae from those of other groups of Dytiscoidea (i.e, Amphizoidae, Noteridae, Dytiscidae). A sister-group relationship between Hygrobiidae and Dytiscidae is indicated by a distinctly shortened and transverse prepharynx and a cerebrum and suboesophaeal ganglion shifted to the anterior third of the head. Larvae of the Australian species H. wattsi and H. australasiae share the presence of a bluntly rounded mandible and an apical position of the primary pore MNd in instar I as potential synapomorphies.
Structural features of larvae and pupae of Prostomis mandibularis are described in detail. Larval features are discussed with respect to their functional and phylogenetic significance. The distinct asymmetry of the larval head, absence of stemmata, presence of a sensorial field on antennomere III, and elongated and broadened mandibles of pupae and adults are autapomorphies of Prostomidae. The placement of Prostomis within Tenebrionoidea is suggested by the posteriorly diverging gula with well developed gular ridges and the anterior position of the posterior tentorial arms. Affinities of Prostomidae with the pythid-pyrochroid-lineage is supported by the pad-like structure of the maxillary articulatory area, the abdominal tergite IX extending to the ventral side of the segment, and the strongly pronounced prognathous condition. Presence of a distinct molar tooth is a derived feature shared by Prostomidae, Pythidae, Pyrochroidae, Inopeplidae and Othniidae. A thorax narrower than the head and the abdomen, and a plate-like abdominal segment IX, which articulates with segment VIII, are possible synapomorphies of Prostomidae, Boridae, Mycteridae and Pyrochroidae. The strongly flattened, prognathous head and the strongly flattened body of larvae of Prostomidae are correlated with their habits of boring in wood of decaying logs.