Let $R$ be a ring. We recall that $R$ is called a near pseudo-valuation ring if every minimal prime ideal of $R$ is strongly prime. Let now $\sigma $ be an automorphism of $R$ and $\delta $ a $\sigma $-derivation of $R$. Then $R$ is said to be an almost $\delta $-divided ring if every minimal prime ideal of $R$ is $\delta $-divided. Let $R$ be a Noetherian ring which is also an algebra over $\mathbb {Q}$ ($\mathbb {Q}$ is the field of rational numbers). Let $\sigma $ be an automorphism of $R$ such that $R$ is a $\sigma (*)$-ring and $\delta $ a $\sigma $-derivation of $R$ such that $\sigma (\delta (a)) = \delta (\sigma (a))$ for all $a \in R$. Further, if for any strongly prime ideal $U$ of $R$ with $\sigma (U) = U$ and $\delta (U)\subseteq \delta $, $U[x; \sigma , \delta ]$ is a strongly prime ideal of $R[x; \sigma , \delta ]$, then we prove the following: (1) $R$ is a near pseudo valuation ring if and only if the Ore extension $R[x; \sigma ,\delta ]$ is a near pseudo valuation ring. (2) $R$ is an almost $\delta $-divided ring if and only if $R[x;\sigma ,\delta ]$ is an almost $\delta $-divided ring.