To explore the effects of water column nutrient loading on photosynthesis of the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June to October), we determined the diurnal and seasonal variation in rapid light curves of plants cultivated under 4 different nutrient concentrations (N-P [mg L-1]: (1) 0.5, 0.05; (2) 1.0, 0.1; (3) 5.0, 0.5; (4) 10.0, 1.0). Nutrient concentration significantly affected the magnitude of the rapid light curves of V. natans, but not the direction of their diurnal variations. At low nutrient conditions (N-P 1 [mg L-1]: 0.5, 0.05), the maximum relative electron transport rate (rETRmax) and minimum saturating irradiance (Ek) derived from rapid light curves were significantly lower than those of other treatments, and their seasonal variations were suppressed. These results indicated that photosynthesis of V. natans was inhibited by the lack of nutrients in water column. At high nutrient conditions (N-P 4, [mg L-1]: 10.0, 1.0), there was an increase in photosynthetic rate in the light-limited region of rapid light curve (α), and a decrease in rETRmax and Ek, relative to moderate nutrient conditions (N-P 2, [mg L-1]: 1.0, 0.1). In addition, at high nutrient concentrations, the rapid light curves of V. natans reached a plateau, and then markedly declined compared with those at the lower nutrient levels, especially in July and August. These results suggested that V. natans were adapted to low-light environments in the high-nutrient loading treatment., X. L. Cai ... [et al.]., and Obsahuje bibliografii
Varied causative and risk factors can lead to cardiac dysfunction. Cardiac dysfunction often evolves into heart failure by cardiac remodeling due to autonomic nervous system disturbance and neurohumoral abnormalities, even if the detriment factors are removed. Renal sympathetic nerve activity plays a pivotal regulatory role in neurohumoral mechanisms. The present study was designed to determine the therapeutic eff ects of renal sympathetic denervation (RSD) on cardiac dysfunction, fibrosis, and neurohumoral response in transverse aortic constriction (TAC) rats with chronic pressure overload. The present study demonstrated that RSD attenuated myocardial fibrosis and hypertrophy, and structural remodeling of the left atrium and ventricle, up -regulated cardiac β adrenoceptor (β -AR, including β 1 AR and β 2 AR) and sarco -endoplasmic reticulum Ca 2+ -ATP ase (SERCA) while down -regulated angiotensin II type 1 receptor (AT 1 R), and decreased plasma B -type natriuretic peptide (BNP), norepinephrine (NE) , angiotensin II (Ang II), and arginine vasopressin (AVP) levels in TAC rats with chronic pressure overload. We conclude that RSD attenuates myocardial fibrosis, the left atrial enlargement, and the left ventricular wall hypertrophy; inhibits the overdrive of the sympathetic ner vous system (SNS), renin- angiotensin -aldosterone system (RAAS), and AVP system in TAC rats with chronic pressure overload . RSD could be a promising non -pharmacological approach to control the progression of cardiac dysfunction., Z.-Z. Li, H. Jiang, D. Chen, Q. Liu, J. Geng, J.-Q. Guo, R.-H. Sun, G.-Q. Zhu, Q.-J. Shan., and Obsahuje bibliografii