The Lyapunov's second method is one of the most famous techniques for studying the stability properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov function, which checks the stability properties of a specific system without the need to generate system solutions. An important question is about the reversibility or converse of Lyapunov's second method; i. e., given a specific stability property does there exist an appropriate Lyapunov function? The main result of this paper is a converse Lyapunov Theorem for practical asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on practical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive systems are established. Finally, some examples are given to show the effectiveness of the derived results.