A characteristic of mast cells is the degranulation in response to various stimuli. Here we have investigated the effects of various physical stimuli in the human mast-cell line HMC-1. We have shown that HMC-1 express the transient receptor potential channels TRPV1, TRPV2 and TRPV4. In the whole-cell patchclamp configuration, increasing mechanical stress applied to the mast cell by hydrostatic pressure (–30 to –90 cm H2 O applied via the patch pipette) induced a current that could be inhibited by 10 µM of ruthenium red. This current was also inhibited by 20 µM SKF96365, an inhibitor that is among TRPV channels specific for the TRPV2. A characteristic of TRPV2 is its activation by high noxious temperature; temperatures exceeding 50 °C induced a similar ruthenium-red-sensitive current. As another physical stimulus, we applied laser light of 640 nm. Here we have shown for the first time that the application of light (at 48 mW for 20 min) induced an SKF96365-sensitive current. All three physical stimuli that led to activation of SKF96365-sensitive current also induced pronounced degranulation in the mast cells, which could be blocked by ruthenium red or SKF96365. The results suggest that TRPV2 is activated by the three different types of physical stimuli. Activation of TRPV2 allows Ca2+ ions to enter the cell, which in turn will induce degranulation. We, therefore, suggest that TRPV2 plays a key role in mast-cell degranulation in response to mechanical, heat and red laser-light stimulation., D. Zhang ... [et al.]., and Obsahuje seznam literatury
Proliferation and migration of retinal endothelial cells (RECs) contribute to the development of diabetic retinopathy. PLAG1 (pleomorphic adenoma gene 1) functions as a zinc-finger transcription factor to participate in the development of lipoblastomas or pleomorphic adenomas of the salivary glands through regulation of cell proliferation and migration. The role of PLAG1 in diabetic retinopathy was investigated in this study. Firstly, RECs were induced under high glucose conditions, which caused reduction in viability and induction of apoptosis in the RECs. Indeed, PLAG1 was elevated in high glucosetreated RECs. Functional assays showed that silence of PLAG1 increased viability and suppressed apoptosis in high glucose-induced RECs, accompanied with up-regulation of Bcl-2 and down-regulation of Bax and cleaved caspase-3. Moreover, migration of RECs was promoted by high glucose conditions, while repressed by knockdown of PLAG1. High glucose also triggered angiogenesis of RECs through up-regulation of vascular endothelial growth factor (VEGF). However, interference of PLAG1 reduced VEGF expression to retard the angiogenesis. Silence of PLAG1 also attenuated high glucose-induced up-regulation of Wnt3a, β-catenin and c-Myc in RECs. Moreover, silence of PLAG1 ameliorated histopathological changes in the retina of STZ-induced diabetic rats through down-regulation of β-catenin. In conclusion, knockdown of PLAG1 suppressed high glucose-induced angiogenesis and migration of RECs, and attenuated diabetic retinopathy by inactivation of Wnt/ β-catenin signalling.