This paper investigates the non-fragile state estimation problem for a class of discrete-time T-S fuzzy systems with time-delays and multiple missing measurements under event-triggered mechanism. First of all, the plant is subject to the time-varying delays and the stochastic disturbances. Next, a random white sequence, the element of which obeys a general probabilistic distribution defined on [0,1], is utilized to formulate the occurrence of the missing measurements. Also, an event generator function is employed to regulate the transmission of data to save the precious energy. Then, a non-fragile state estimator is constructed to reflect the randomly occurring gain variations in the implementing process. By means of the Lyapunov-Krasovskii functional, the desired sufficient conditions are obtained such that the Takagi-Sugeno (T-S) fuzzy estimation error system is exponentially ultimately bounded in the mean square. And then the upper bound is minimized via the robust optimization technique and the estimator gain matrices can be calculated. Finally, a simulation example is utilized to demonstrate the effectiveness of the state estimation scheme proposed in this paper.