The factors that affect the local distribution of the invasive Harmonia axyridis are not yet completely resolved. Hypotheses predicting positive and independent effects of prey abundance and degree of urbanization on the adult abundance of this species in Central Europe were tested. Populations of H. axyridis were sampled in a period when it was most abundant, by sweeping lime trees (Tilia spp.) at 28 sites along a 20 km transect across urban (western Prague) and surrounding rural areas. The sites differed in aphid abundance (number of Eucallipterus tiliae per 100 sweeps) and degree of urbanization (percentage of the surrounding area within a 500 m radius covered by impervious human constructions). Multiple linear regression analysis of log-transformed data revealed that abundance of H. axyridis (number of adults per 100 sweeps) increased significantly with both aphid abundance (P = 0.015) and urbanization (P = 0.045). The positive relationship between degree of urbanization and abundance of H. axyridis was thus not a side effect of variation in aphid abundance, which was also greater in urban than rural areas. The effect of urbanization might constrict the habitat available to H. axyridis and force this species to aggregate in urban green "refugia". These results point to a plurality of factors that determine coccinellid abundance at natural sites.
To determine the causes of the variation in the seasonal dynamics of Harmonia axyridis (Pallas) in Central Europe, numbers of adults and larvae of this invasive species were recorded on trees (Acer, Betula, Tilia) throughout the growing seasons from 2011 to 2016. Each year beetles were collected every two weeks, using a standardized sweeping method. The seasonal dynamics was expressed as plots of abundance (number of individuals per 100 sweeps) against time (Julian day) and these plots (seasonal profi les) were compared in terms of their size (area under the seasonal profi le curve), range, timing and height of the mode (maximum abundance). Timing and size of seasonal profi les varied among hostplants, years and sites. Abundance of larvae paralleled aphid occurrence and peak abundance of adults followed that of larvae 10 to 20 days later. Population dynamics before and after the peak were determined by dispersal. Adults arrived at sites before the start of aphid population growth and persisted there long after aphid populations collapsed. The abundance of H. axyridis decreased from 2011 to 2013 and then increased, achieving the previous levels recorded in 2015 and 2016. The variation in seasonal profi les revealed that H. axyridis, in terms of its response to environmental conditions, is a plastic species and this fl exibility is an important factor in its invasive success.
The mating behaviour of Pyrrhocoris apterus in the laboratory is well studied, but little is known about it under natural conditions. In natural populations in Central Europe, overwintered adults start copulating in March and continue until their death. Caged females, kept under natural conditions in the permanent presence of males, copulated repeatedly. Their mating activity increased sharply until early April, then very slowly until the end of June and then declined as the females die-off. Half of copulations were short (< 5 h) and only 9% were longer than 1 day. By contrast, in natural populations, mating activity (percentage of individuals involved in copula) reached its maximum in April and then decreased until early July, when the overwintered adults die. The decline in mating frequency (percentage of adults involved in copula) was associated with a decrease in the availability of receptive females towards the end of the mating period. For a female, repeated copulation is necessary because sperm is nearly depleted after insemination of 3-5 egg batches.
We surveyed ladybirds (Coleoptera: Coccinellidae) in 10 stands of Scots pine (Pinus sylvestris), all monoculture stands 5–100 years old, in western Slovakia, Central Europe, over two successive periods, October 2013 – March 2014 and October 2014 – March 2015. The winter in each period was exceptionally mild. Ladybirds were collected from the lower branches of pine trees using beating trays and were present in 61% of the 1040 samples (one sample containing ladybirds from 20 branches, 1 m long each). In total 3965 individuals of 20 species were recorded. Non-conifer dwelling species associated with broadleaved trees or herbaceous plants prevailed (45% of species), followed by conifer specialists (40%) and generalists (15%). Although 13 species were found at least in one winter month, December, January or February, only four of them, Exochomus quadripustulatus, Coccinella septempunctata, Harmonia axyridis and Hippodamia variegata, were recorded continually during both winters. The number of species, the abundance of all ladybirds and the abundance of dominant species (E. quadripustulatus, C. septempunctata and H. axyridis) decreased from late autumn towards winter and remained lowest during this most adverse time of the year for ladybirds. Overwintering species assemblages of ladybirds changed over time and varied with age of pine stand. Our results suggest that Scots pine in Central Europe supports species rich assemblages of ladybirds from late autumn to early spring and, being widely distributed, it could be suited to winter surveying of ladybirds at large spatial scales to reveal behavioural and ecological responses of species to changing weather or different climates.