a1_Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension – salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of reninangiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the saltsensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake., a2_On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals., J. Zicha, ... [et al.]., and Obsahuje seznam literatury
Hypertension is one of the major risk factor of cardiovascular diseases, but after a century of clinical and basic research, the discrete etiology of this disease is still not fully understood. One reason is that blood pressure is a quantitative trait with multifactorial determination. Numerous genes, environmental factors as well as epigenetic factors should be considered. There is no doubt that although the full manifestation of hypertension and other cardiovascular diseases usually occurs predominantly in adulthood and/or senescence, the roots can be traced back to early ontogeny. The detailed knowledge of the ontogenetic changes occurring in the cardiovascular system of experimental animals during particular critical periods (developmental windows) could help to solve this problem in humans and might facilitate the age-specific prevention of human hypertension. We thus believe that this approach might contribute to the reduction of cardiovascular morbidity among susceptible individuals in the future., J. Kuneš, ... [et al.]., and Obsahuje seznam literatury
The relationship between angiotensin II (ANG II) and endothelin-1 (ET-1) is known to be complex; both peptides can initiate and potentiate the gene expression of each other. This pilot study investigated the effects of the AT1 receptor blocker losartan or the direct renin inhibitor aliskiren on mean arterial pressure (MAP) and albuminuria and the renal ANG II and ET-1 levels. 3-month-old male Ren-2 transgenic rats (TGR) were treated either with losartan (5 mg kg-1 day-1) or aliskiren (10 mg kg-1 day-1) for 10 weeks. At the end of the experiment, rats were decapitated and cortical and papillary parts of kidneys were separated. Plasma and tissue ANG II levels were measured by RIA and tissue ET-1 concentrations by ELISA. In all four groups of animals ET-1 levels were lowest in renal cortex and more than 100-fold higher in the papilla. Cortical and papillary ET-1 concentrations in untreated TGR significantly exceeded those of control HanSD rats and were significantly depressed by both drugs. In both strains, papillary ANG II concentrations were moderately but significantly higher than cortical ANG II, TGR exhibited higher ANG II levels both in cortex and papilla as compared to control HanSD rats. Aliskiren and losartan at the doses used depressed similarly the levels of ANG II in cortex and papilla and reduced ET-1 significantly in the renal cortex and papilla below control levels in HanSD rats. Albuminuria, which was more than twice as high in TGR as in HanSD rats, was normalized with aliskiren and reduced by 28 % with losartan, although MAP was reduced to a similar degree by both drugs. Despite similar reductions of MAP and renal ET-1 and ANG II levels aliskiren appears to be more effective than losartan, at the doses used, in reducing albuminuria in heterozygous hypertensive Ren-2 rats., Z. Vaňourková ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The rat strain transgenic for the murine Ren-2 renin gene (TGR) is defined as a monogenic model of angiotensin II-dependent hypertension with endogenous activation of the renin-angiotensin system. Homozygous males TGR develop malignant hypertension with a strong salt-sensitive component. These animals show severe hypertension, proteinuria and high mortality. Morphological changes of renal parenchyma correspond to chronic ischemic glomerular changes. Heterozygous TGR develop only mild hypertension and thus provide a more suitable model of hypertension regarding to clinic al studies. Within the renal parenchyma, secondary focal segmental glomerulosclerosis (FSGS) predominates. High-salt diet in heterozygous animals induces transition from benign to malignant phase of hypertension. In this case, ischemic glomerular changes are superimposed on preexisting secondary FSGS. In the regression model of hypertension (late-onset treatment) the effect of salt intake is attenuated. In homozygous TGR, early selective ET A receptor blockade decreased blood pressure and ameliorated end-organ damage. Late selective ET A receptor blockade reduced podocyte injury despite final severe hypertension. Survival rate was markedly improved in both regimens with ETA selective blockade, while there was only partial improvement with early non-selective blockade. Both bosentan and atrasentan decreased ET-1 levels in both regimens. In heterozygous TGR, early and late ETA treatment substantially while ETA/ETB treatment partially improved survival rate. Significant effect on BP was found with early and late ETA blockade, while ETA/ETB blockade had no effect. Bosentan and at rasentan similarly decreased ET-1 levels on both regimens. In conclusion, selective ETA receptor blockade is superior to nonselective ETA/ETB receptor blockade in attenuating hypertension and end-organ damage. Its effect is more pronounced when applied early in the life., Z. Vernerová ... [et al.]., and Obsahuje seznam literatury
The incidence of metabolic syndrome increases in the developed countries, therefore biomedical research is focused on the understanding of its etiology. The study of exact mechanisms is very complicated because both genetic and environmental factors contribute to this complex disease. The ability of environmental fac tors to promote phenotype changes by epigenetic DNA modifications (i.e. DNA methylation, histone modifications) was demonstrated to play an important role in the development and predisposition to particular symptoms of metabolic syndrome. There is no doubt that the early life, such as the fetal and perinatal periods, is critical for metabolic syndrome development and therefore critical for prevention of this disease. Moreover, these changes are visible not only in individuals exposed to environmental factor s but also in the subsequent progeny for multiple generations and this phenomenon is called transgenerational inheritance. The knowledge of molecular mechanisms, by which early minor environmental stimuli modify the expression of genetic information, might be the desired key for the understanding of mechanisms leading to the change of phenotype in adulthood. This review provides a short overview of metabolic syndrome epigenetics., J. Kuneš, I. Vaněčková, B. Mikulášková, M. Behuliak, L. Maletínská, J. Zicha., and Obsahuje bibliografii
Hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) play an important role in brain control of blood pressure (BP). One of the important mechanisms involved in the pathogenesis of hypertension is the elevation of reactive oxygen species (ROS) production by nicotine adenine dinucleotide phosphate (NADPH) oxidase. The aim of our present study was to investigate NADPH oxidase -mediated superoxide (O 2 - ) production and to search for the signs of lipid peroxidation in hypothalamus and medulla oblongata as well as in renal medulla and cortex of hypertensive male rats transgenic for the murine Ren -2 renin gene (Ren -2 TGR) and their age -matched normotensive controls ‒ Hannover Sprague Dawley rats (HanSD) . We found no difference in the activity of NADPH oxidase measured as a lucigenin -mediated O 2 - production in the hypothalamus and medulla oblongata. However, we observed significantly elevated NADPH oxidase in both renal cortex and medulla of Ren -2 TGR com pared with HanSD. Losartan (LOS) treatment (10 mg/kg body weight/day) for 2 months (Ren -2 TGR+LOS) did not change NADPH oxidase -dependent O 2 - production in the kidney. We detected significantly elevated indirect m arkers of lipid peroxidation measured as th iobarbituric acid -reactive substance s (TBARS) in Ren -2 TGR, while they were significantly decreased in Ren -2 TGR +LOS. In conclusion, the present study shows increased NADPH oxidase activities in renal cortex and medulla with significantly increased TBARS in renal cortex. No significant changes of NADPH oxidase and markers of lipid peroxidation were detected in the studied brain regions., M. Vokurková, H. Rauchová, L. Řezáčová, I. Vaněčková, J. Zicha., and Obsahuje bibliografii
High blood pressure (BP) of spontaneously hypertensive rats (SHR) is maintained by enhanced activity of sympathetic nervous system (SNS), whereas that of Ren-2 transgenic rats (Ren-2 TGR) by increased activity of renin-angiotensin system (RAS). However, both types of hypertension are effectively attenuated by chronic blockade of L-type voltage-dependent calcium channel (L-VDCC). The aim of our study was to evaluate whether the magnitude of BP response elicited by acute nifedipine administration is proportional to the alterations of particular vasoactive systems (SNS, RAS, NO) known to modulate L-VDCC activity. We therefore studied thes e relationships not only in SHR, in which mean arterial pressure was modified in a wide range of 100-210 mm Hg by chronic antihypertensive treatment (captopril or hydralazine) or its withdrawal, but also in rats with augmented RAS activity such as homozygous Ren-2 TGR, pertussis toxin- treated SHR or L-NAME-treated SHR. In all studied groups the magnitude of BP response to nifedipine was proportional to actual BP level and it closely correlated with BP changes induced by acute combined blockade of RAS and SNS. BP response to nifedipine is also closely related to the degree of relative NO deficiency. This was true for both SNS- and RAS-dependent forms of genetic hypertension, suggesting common mechanisms responsible for enhanced L-VDCC opening and/or their upregulation in hypertensive animals. In conclusions, BP response to nifedipine is proportional to the vasoconstrictor activity exerted by both SNS and RAS, indicating a key importance of these two pressor systems for actual L-VDCC opening necessary for BP maintenance., J. Zicha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
The objective of the current study was to search for genetic determinants associated with antihypertensive effects of angiotensin-converting enzyme (ACE) inhibitor captopril. Linkage and correlation analyses of captopril-induced effects on blood pressure (BP) with renal transc riptome were performed in the BXH/HXB recombinant inbred (RI) strains derived from spontaneously hypertensive rat (SHR) and Brown Norway (BN-Lx) progenitors. Variability of blood pressure lowering effects of captopril among RI strains was continuous suggesting a polygenic mode of inheritance. Linkage analysis of captopril- induced BP effects revealed a significant quantitative trait locus (QTL) on chromosome 15. This QTL colocalized with cis regulated expression QTL (eQTL) for the Ednrb (endothelin receptor type B) gene in the kidney (SHR allele was associated with increased renal expression) and renal expression of Ednrb correlated with captopril-induced BP effects. These results suggest that blood pressure lowering effects of ACE inhibitor captopril may be modulated by the variants at the Ednrb locus., J. Zicha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Chronic kidney disease (CKD) is a life-threatening disease arising as a frequent complication of diabetes, obesity and hypertension. Since it is typically undetected for long periods, it often progresses to end-stage renal disease. CKD is characterized by the development of progressive glomerulosclerosis, interstitial fibrosis and tubular atrophy along with a decreased glomerular filtration rate. This is associated with podocyte injury and a progressive rise in proteinuria. As endothelin-1 (ET-1) through the activation of endothelin receptor type A (ETA) promotes renal cell injury, inflammation, and fibrosis which finally lead to proteinuria, it is not surprising that ETA receptors antagonists have been proven to have beneficial renoprotective effects in both experimental and clinical studies in diabetic and non-diabetic CKD. Unfortunately, fluid retention encountered in large clinical trials in diabetic CKD led to the termination of these studies. Therefore, several advances, including the synthesis of new antagonists with enhanced pharmacological activity, the use of lower doses of ET antagonists, the addition of diuretics, plus simply searching for distinct pathological states to be treated, are promising targets for future experimental studies. In support of these approaches, our group demonstrated in adult subtotally nephrectomized Ren-2 transgenic rats that the addition of a diuretic on top of renin-angiotensin and ETA blockade led to a further decrease of proteinuria. This effect was independent of blood pressure which was normalized in all treated groups. Recent data in non-diabetic CKD, therefore, indicate a new potential for ETA antagonists, at least under certain pathological conditions., I. Vaněčková, S. Hojná, M. Kadlecová, Z. Vernerová, L. Kopkan, L. Červenka, J. Zicha., and Seznam literatury