We give necessary conditions in terms of the coefficients for the convergence of a double trigonometric series in the L p -metric, where 0 < p < 1. The results and their proofs have been motivated by the recent papers of A. S. Belov (2008) and F. Móricz (2010). Our basic tools in the proofs are the Hardy-Littlewood inequality for functions in Hp and the Bernstein-Zygmund inequalities for the derivatives of trigonometric polynomials and their conjugates in the L p -metric, where 0 < p < 1.
It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone or general monotone double sequences. In this paper we give new sufficient conditions for the uniformity of the regular convergence of sine-cosine and double cosine series, which are necessary as well in case the coefficients are non-negative. The new results also bring necessary and sufficient conditions for the uniform regular convergence of double trigonometric series in complex form.