We present several results dealing with the asymptotic behaviour of a real twodimensional system x ′ (t) = A(t)x(t) + ∑ Pm k=1 Bk(t)x(θk(t)) + h(t, x(t), x(θ1(t)), . . . , x(θm(t))) with bounded nonconstant delays t − θk(t) ≥ 0 satisfying limt→∞ θk(t) = ∞, under the assumption of instability. Here A, Bk and h are supposed to be matrix functions and a vector function, respectively. The conditions for the instable properties of solutions together with the conditions for the existence of bounded solutions are given. The methods are based on the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties are studied by means of a suitable Lyapunov-Krasovskii functional and the Wa˙zewski topological principle. The results generalize some previous ones, where the asymptotic properties for two-dimensional systems with one constant or nonconstant delay were studied.
The asymptotic behaviour of the solutions is studied for a real unstable twodimensional system x ' (t) = A(t)x(t) + B(t)x(t − r) + h(t, x(t), x(t − r)), where r > 0 is a constant delay. It is supposed that A, B and h are matrix functions and a vector function, respectively. Our results complement those of Kalas [Nonlinear Anal. 62(2) (2005), 207–224], where the conditions for the existence of bounded solutions or solutions tending to the origin as t → ∞ are given. The method of investigation is based on the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle. Stability and asymptotic behaviour of the solutions for the stable case of the equation considered were studied in Kalas and Baráková [J. Math. Anal. Appl. 269(1) (2002), 278–300].
In the present paper we give general nonuniqueness results which cover most of the known nonuniqueness criteria. In particular, we obtain a generalization of the nonuniqueness theorem of Chr. Nowak, of Samimi’s nonuniqueness theorem and of Stettner’s nonuniqueness criterion.