The paper concerns analysis of solutions obtained during common processing of data from GNSS permanent stations situated on mountainous terrain: the Western Carpathians, the Sudetes Mountains and adjacent areas. As the outcome daily and weekly solutions (ellipsoidal coordinates) of forty Polish, Czech, Slovak, Ukrainian and German sites were obtained. Weekly solutions were used to determine velocity field and vertical movements, daily solutions enabled quality and precision of sites’ coordinates estimation to check if permanent GNSS sites can be used as a stable reference frame for geodetic, geological and geodynamical measurements in the mountainous area. First investigations concerning data from permanent GNSS stations in the Sudetes Mountains were made in 2007 using daily solutions from EPN sites obtained in test reprocessing of the whole regional network performed in Centre of Applied Geomatics. Since that time, national systems became operational increasing density of GNSS network, so the data can be used for wider range of investigations. As the majority of examined stations started to gather data in 2008, analysis were based on relatively short observation period, so they rather play a role of tests for further investigations and they give the preliminary estimation of individual sites’ activity., Mariusz Figurski, Karolina Szafranek, Janusz Bogusz and Paweł Kamiński., and Obsahuje bibliografii
The aim of this paper is to show time-de pendent baseline variation between GPS stations situated in South-East Poland. This study was based on daily data analysis of selected GPS stations: WROC, GOPE, MOPI, KRAW and KATO. The start date o f the analysis is linked at every station with the beginning of its operation and the closing date of the operation is in 2006. The multiresolution signal decomposition method has been used to analyze the periodic terms of the time series of the above. The estimated trends enable further coordinate analysis as well as determination of site displacements at the study area., Mariusz Figurski, Krzysztof Kroszczyński, Paweł Kamiński and Marcin Gałuszkiewicz., and Obsahuje bibliografické odkazy
The paper presents a computer module for GPS slant delay determination using data from COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere which is run on IA64 Feniks computer cluster in the Department of Civil Engineering and Geodesy of the Military University of Technology. The slant delay is the result of integrating the ray (eikonal) equation for the spatial function of tropospheric refraction along the GPS wave propagation path. The work is a phase of research concerning operational methods of GPS slant delay determination using data from mesoscale non-hydrostatic models of the atmosphere, like COAMPS of the Naval Research Laboratory (NRL) and the Weather Research and Forecasting (WRF)., Mariusz Figurski, Marcin Gałuszkiewicz, Paweł Kamiński and Krzysztof Kroszczński., and Obsahuje bibliografické odkazy