In this paper, the exponential stability of periodic solutions for inertial Cohen-Grossberg-type neural networks are investigated. First, by properly chosen variable substitution the system is transformed to first order differential equation. Second, some sufficient conditions which can ensure the existence and exponential stability of periodic solutions for the system are obtained by using constructing suitable Lyapunov function and differential mean value theorem, applying the analysis method and inequality technique. Finally, two examples are given to illustrate the effectiveness of the results.